Pentapartite Entanglement Measures of GHZ and W-Class State in the Noninertial Frame

We study both pentapartite GHZ and W-class states in the noninertial frame and explore their entanglement properties by carrying out the negativities including 1-4, 2-3, and 1-1 tangles, the whole entanglement measures such as algebraic and geometric averages <inline-formula><math xmlns=&qu...

Full description

Bibliographic Details
Main Authors: Juan Luis Manríquez Zepeda, Juvenal Rueda Paz, Manuel Avila Aoki, Shi-Hai Dong
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/6/754
Description
Summary:We study both pentapartite GHZ and W-class states in the noninertial frame and explore their entanglement properties by carrying out the negativities including 1-4, 2-3, and 1-1 tangles, the whole entanglement measures such as algebraic and geometric averages <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>π</mi><mn>5</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="normal">Π</mi><mn>5</mn></msub></semantics></math></inline-formula>, and von Neumann entropy. We illustrate graphically the difference between the pentapartite GHZ and W-class states. We find that all 1-4, 2-3 tangles and the whole entanglements, which are observer dependent, degrade more quickly as the number of accelerated qubits increases. The entanglements of these quantities still exist even at the infinite acceleration limit. We also notice that all 1-1 tangles of pentapartite GHZ state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>α</mi><mi>β</mi></mrow></msub><mo>=</mo><msub><mi>N</mi><mrow><msub><mi>α</mi><mi>I</mi></msub><mi>β</mi></mrow></msub><mo>=</mo><msub><mi>N</mi><mrow><msub><mi>α</mi><mi>I</mi></msub><msub><mi>β</mi><mi>I</mi></msub></mrow></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula>, whereas all 1-1 tangles of the W-class state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>α</mi><mi>β</mi></mrow></msub><mo>,</mo><msub><mi>N</mi><mrow><msub><mi>α</mi><mi>I</mi></msub><mi>β</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>N</mi><mrow><msub><mi>α</mi><mi>I</mi></msub><msub><mi>β</mi><mi>I</mi></msub></mrow></msub></semantics></math></inline-formula> are unequal to zero, e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>α</mi><mi>β</mi></mrow></msub><mo>=</mo><mn>0.12111</mn></mrow></semantics></math></inline-formula> but <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>N</mi><mrow><msub><mi>α</mi><mi>I</mi></msub><mi>β</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>N</mi><mrow><msub><mi>α</mi><mi>I</mi></msub><msub><mi>β</mi><mi>I</mi></msub></mrow></msub></semantics></math></inline-formula> disappear at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>></mo><mn>0.61548</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>></mo><mn>0.38671</mn></mrow></semantics></math></inline-formula>, respectively. We notice that the entanglement of the pentapartite GHZ and W-class quantum systems decays faster as the number of accelerated particles increases. Moreover, we also illustrate the difference of von Neumann entropy between them and find that the entropy in the pentapartite W-class state is greater than that of GHZ state. The von Neumann entropy in the pentapartite case is more unstable than those of tripartite and tetrapartite subsystems in the noninertial frame.
ISSN:1099-4300