Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 K

The magnetic spectrometer AMS-100, which includes a superconducting coil, is designed to measure cosmic rays and detect cosmic antimatter in space. This extreme environment requires a suitable sensing solution to monitor critical changes in the structure such as the beginning of a quench in the supe...

Full description

Bibliographic Details
Main Authors: Caroline Girmen, Clemens Dittmar, Thorsten Siedenburg, Markus Gastens, Michael Wlochal, Niels König, Kai-Uwe Schröder, Stefan Schael, Robert H. Schmitt
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/10/4607
_version_ 1797598366103764992
author Caroline Girmen
Clemens Dittmar
Thorsten Siedenburg
Markus Gastens
Michael Wlochal
Niels König
Kai-Uwe Schröder
Stefan Schael
Robert H. Schmitt
author_facet Caroline Girmen
Clemens Dittmar
Thorsten Siedenburg
Markus Gastens
Michael Wlochal
Niels König
Kai-Uwe Schröder
Stefan Schael
Robert H. Schmitt
author_sort Caroline Girmen
collection DOAJ
description The magnetic spectrometer AMS-100, which includes a superconducting coil, is designed to measure cosmic rays and detect cosmic antimatter in space. This extreme environment requires a suitable sensing solution to monitor critical changes in the structure such as the beginning of a quench in the superconducting coil. Rayleigh-scattering-based distributed optical fibre sensors (DOFS) fulfil the high requirements for these extreme conditions but require precise calibration of the temperature and strain coefficients of the optical fibre. Therefore, the fibre-dependent strain and temperature coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi mathvariant="normal">T</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>ϵ</mi></msub></semantics></math></inline-formula> for the temperature range from 77 K to 353 K were investigated in this study. The fibre was integrated into an aluminium tensile test sample with well-calibrated strain gauges to determine the fibre’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>ϵ</mi></msub></semantics></math></inline-formula> independently of its Young’s modulus. Simulations were used to validate that the strain caused by changes in temperature or mechanical conditions was the same in the optical fibre as in the aluminium test sample. The results indicated a linear temperature dependence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>ϵ</mi></msub></semantics></math></inline-formula> and a non-linear temperature dependence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi mathvariant="normal">T</mi></msub></semantics></math></inline-formula>. With the parameters presented in this work, it was possible to accurately determine the strain or temperature of an aluminium structure over the entire temperature range from 77 K to 353 K using the DOFS.
first_indexed 2024-03-11T03:21:12Z
format Article
id doaj.art-2d4363b9f958495fa15635b52bd39e26
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T03:21:12Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-2d4363b9f958495fa15635b52bd39e262023-11-18T03:09:49ZengMDPI AGSensors1424-82202023-05-012310460710.3390/s23104607Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 KCaroline Girmen0Clemens Dittmar1Thorsten Siedenburg2Markus Gastens3Michael Wlochal4Niels König5Kai-Uwe Schröder6Stefan Schael7Robert H. Schmitt8Department Production Metrology, Fraunhofer Institute for Production Technology IPT, Steinbachstraße 17, 52074 Aachen, GermanyI Physics Institute B, RWTH Aachen University, Templergraben 55, 52062 Aachen, GermanyI Physics Institute B, RWTH Aachen University, Templergraben 55, 52062 Aachen, GermanyInstitute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Templergraben 55, 52062 Aachen, GermanyI Physics Institute B, RWTH Aachen University, Templergraben 55, 52062 Aachen, GermanyDepartment Production Metrology, Fraunhofer Institute for Production Technology IPT, Steinbachstraße 17, 52074 Aachen, GermanyInstitute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Templergraben 55, 52062 Aachen, GermanyI Physics Institute B, RWTH Aachen University, Templergraben 55, 52062 Aachen, GermanyDepartment Production Metrology, Fraunhofer Institute for Production Technology IPT, Steinbachstraße 17, 52074 Aachen, GermanyThe magnetic spectrometer AMS-100, which includes a superconducting coil, is designed to measure cosmic rays and detect cosmic antimatter in space. This extreme environment requires a suitable sensing solution to monitor critical changes in the structure such as the beginning of a quench in the superconducting coil. Rayleigh-scattering-based distributed optical fibre sensors (DOFS) fulfil the high requirements for these extreme conditions but require precise calibration of the temperature and strain coefficients of the optical fibre. Therefore, the fibre-dependent strain and temperature coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi mathvariant="normal">T</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>ϵ</mi></msub></semantics></math></inline-formula> for the temperature range from 77 K to 353 K were investigated in this study. The fibre was integrated into an aluminium tensile test sample with well-calibrated strain gauges to determine the fibre’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>ϵ</mi></msub></semantics></math></inline-formula> independently of its Young’s modulus. Simulations were used to validate that the strain caused by changes in temperature or mechanical conditions was the same in the optical fibre as in the aluminium test sample. The results indicated a linear temperature dependence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>ϵ</mi></msub></semantics></math></inline-formula> and a non-linear temperature dependence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi mathvariant="normal">T</mi></msub></semantics></math></inline-formula>. With the parameters presented in this work, it was possible to accurately determine the strain or temperature of an aluminium structure over the entire temperature range from 77 K to 353 K using the DOFS.https://www.mdpi.com/1424-8220/23/10/4607optical fibre sensorOFDRcalibrationstraincryogenic temperatureAMS-100
spellingShingle Caroline Girmen
Clemens Dittmar
Thorsten Siedenburg
Markus Gastens
Michael Wlochal
Niels König
Kai-Uwe Schröder
Stefan Schael
Robert H. Schmitt
Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 K
Sensors
optical fibre sensor
OFDR
calibration
strain
cryogenic temperature
AMS-100
title Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 K
title_full Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 K
title_fullStr Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 K
title_full_unstemmed Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 K
title_short Young’s Modulus-Independent Determination of Fibre Parameters for Rayleigh-Based Optical Frequency Domain Reflectometry from Cryogenic Temperatures up to 353 K
title_sort young s modulus independent determination of fibre parameters for rayleigh based optical frequency domain reflectometry from cryogenic temperatures up to 353 k
topic optical fibre sensor
OFDR
calibration
strain
cryogenic temperature
AMS-100
url https://www.mdpi.com/1424-8220/23/10/4607
work_keys_str_mv AT carolinegirmen youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT clemensdittmar youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT thorstensiedenburg youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT markusgastens youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT michaelwlochal youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT nielskonig youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT kaiuweschroder youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT stefanschael youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k
AT roberthschmitt youngsmodulusindependentdeterminationoffibreparametersforrayleighbasedopticalfrequencydomainreflectometryfromcryogenictemperaturesupto353k