Airborne Electromagnetics to Improve Landslide Knowledge in Tropical Volcanic Environments

Caribbean areas are particular volcanic territories in tropical environments. These territories juxtapose several landslide-prone areas with different predisposing factors (poorly consolidated volcanic materials, superimposition of healthy materials on highly weathered materials, high heterogeneity...

Full description

Bibliographic Details
Main Authors: Yannick Thiery, Pierre-Alexandre Reninger, Aude Nachbaur
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/8/3390
Description
Summary:Caribbean areas are particular volcanic territories in tropical environments. These territories juxtapose several landslide-prone areas with different predisposing factors (poorly consolidated volcanic materials, superimposition of healthy materials on highly weathered materials, high heterogeneity of thicknesses, etc.). In these environments, where rapid development of slopes and land use changes are noticeable, it is necessary to better characterize these unstable phenomena that cause damage to infrastructure and people. This characterization has to be carried out on the materials as well as on the initiation conditions of the phenomena and requires complementary investigations. This study, focusing on La Martinique, proposes a landslide analysis methodology that combines new information about landslide-prone materials acquired by an airborne electromagnetics survey with a physical-based model. Once the data are interpreted and compared with field observations and previous data, a geological model is produced and introduced into the physical model to test different instability scenarios. The results show that geophysical investigations (i) improve the knowledge of the internal structure of landslides and surficial formations, (ii) specify the spatial limits of the materials that are sensitive to landslides, and (iii) give a better understanding of landslide initiation conditions, particularly hydrogeological triggering conditions.
ISSN:2076-3417