Sodium–glucose cotransporters: Functional properties and pharmaceutical potential

Abstract Glucose is the most abundant monosaccharide, and an essential source of energy for most living cells. Glucose transport across the cell membrane is mediated by two types of transporters: facilitative glucose transporters (gene name: solute carrier 2A) and sodium–glucose cotransporters (SGLT...

Full description

Bibliographic Details
Main Authors: Ryuhei Sano, Yuichi Shinozaki, Takeshi Ohta
Format: Article
Language:English
Published: Wiley 2020-07-01
Series:Journal of Diabetes Investigation
Subjects:
Online Access:https://doi.org/10.1111/jdi.13255
Description
Summary:Abstract Glucose is the most abundant monosaccharide, and an essential source of energy for most living cells. Glucose transport across the cell membrane is mediated by two types of transporters: facilitative glucose transporters (gene name: solute carrier 2A) and sodium–glucose cotransporters (SGLTs; gene name: solute carrier 5A). Each transporter has its own substrate specificity, distribution, and regulatory mechanisms. Recently, SGLT1 and SGLT2 have attracted much attention as therapeutic targets for various diseases. This review addresses the basal and functional properties of glucose transporters and SGLTs, and describes the pharmaceutical potential of SGLT1 and SGLT2.
ISSN:2040-1116
2040-1124