Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation

<italic>Goal:</italic> Building a DL model that can be trained on small EEG training set of a single subject presents an interesting challenge that this work is trying to address. In particular, this study is trying to avoid the need for long EEG data collection sessions, and without com...

Full description

Bibliographic Details
Main Authors: Haider Alwasiti, Mohd Zuki Yusoff
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Open Journal of Engineering in Medicine and Biology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9962758/
Description
Summary:<italic>Goal:</italic> Building a DL model that can be trained on small EEG training set of a single subject presents an interesting challenge that this work is trying to address. In particular, this study is trying to avoid the need for long EEG data collection sessions, and without combining multiple subjects training datasets, which has a detrimental effect on the classification performance due to the inter-individual variability among subjects. <italic>Methods:</italic> A customized Convolutional Neural Network with mixup augmentation was trained with <inline-formula><tex-math notation="LaTeX">$\scriptstyle \mathtt {\sim }$</tex-math></inline-formula>120 EEG trials for only one subject per model. <italic>Results:</italic> Modified ResNet18 and DenseNet121 models with mixup augmentation achieved 0.920 (95&#x0025; Confidence Interval: 0.908, 0.933) and 0.933 (95&#x0025; Confidence Interval: 0.922, 0.945) classification accuracy, respectively. <italic>Conclusions:</italic> We show that the designed classifiers resulted in a higher classification performance in comparison to other DL classifiers of previous studies on the same dataset, despite the limited training dataset used in this work.
ISSN:2644-1276