One-Body Capillary Plasma Source for Plasma Accelerator Research at e-LABs

We report on the development of a compact, gas-filled capillary plasma source for plasma accelerator applications. The one-body sapphire capillary was created through a diamond machining technique, which enabled a straightforward and efficient manufacturing process. The effectiveness of the capillar...

Full description

Bibliographic Details
Main Authors: Sihyeon Lee, Seong-hoon Kwon, Inhyuk Nam, Myung-Hoon Cho, Dogeun Jang, Hyyong Suk, Minseok Kim
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/4/2564
Description
Summary:We report on the development of a compact, gas-filled capillary plasma source for plasma accelerator applications. The one-body sapphire capillary was created through a diamond machining technique, which enabled a straightforward and efficient manufacturing process. The effectiveness of the capillary as a plasma acceleration source was investigated through laser wakefield acceleration experiments with a helium-filled gas cell, resulting in the production of stable electron beams of 200 MeV. Discharge capillary plasma was generated using a pulsed, high-voltage system for potential use as an active plasma lens. A peak current of 140 A, corresponding to a focusing gradient of 97 T/m, was observed at a voltage of 10 kV. These results demonstrate the potential utility of the developed capillary plasma source in plasma accelerator research using electron beams from a photocathode gun.
ISSN:2076-3417