The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-Problems

In this paper, we consider local Dirichlet problems driven by the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>u</mi><...

Full description

Bibliographic Details
Main Author: Calogero Vetro
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/2/237
_version_ 1797492276256047104
author Calogero Vetro
author_facet Calogero Vetro
author_sort Calogero Vetro
collection DOAJ
description In this paper, we consider local Dirichlet problems driven by the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian operator in the principal part. We prove the existence of nontrivial weak solutions in the case where the variable exponents <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></semantics></math></inline-formula> are real continuous functions and we have dependence on the solution <i>u</i>. The main contributions of this article are obtained in respect of: (i) Carathéodory nonlinearity satisfying standard regularity and polynomial growth assumptions, where in this case, we use geometrical and compactness conditions to establish the existence of the solution to a regularized problem via variational methods and the critical point theory; and (ii) Sobolev nonlinearity, somehow related to the space structure. In this case, we use a priori estimates and asymptotic analysis of regularized auxiliary problems to establish the existence and uniqueness theorems via a fixed-point argument.
first_indexed 2024-03-10T01:01:19Z
format Article
id doaj.art-2d81f667ed01491fb8073d41a4d73795
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T01:01:19Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2d81f667ed01491fb8073d41a4d737952023-11-23T14:34:26ZengMDPI AGMathematics2227-73902022-01-0110223710.3390/math10020237The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-ProblemsCalogero Vetro0Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123 Palermo, ItalyIn this paper, we consider local Dirichlet problems driven by the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian operator in the principal part. We prove the existence of nontrivial weak solutions in the case where the variable exponents <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></semantics></math></inline-formula> are real continuous functions and we have dependence on the solution <i>u</i>. The main contributions of this article are obtained in respect of: (i) Carathéodory nonlinearity satisfying standard regularity and polynomial growth assumptions, where in this case, we use geometrical and compactness conditions to establish the existence of the solution to a regularized problem via variational methods and the critical point theory; and (ii) Sobolev nonlinearity, somehow related to the space structure. In this case, we use a priori estimates and asymptotic analysis of regularized auxiliary problems to establish the existence and uniqueness theorems via a fixed-point argument.https://www.mdpi.com/2227-7390/10/2/237(<i>r</i>(<i>u</i>),<i>s</i>(u))-Laplacian operatorPalais-Smale conditionmonotone operatorregularized problemweak solution
spellingShingle Calogero Vetro
The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-Problems
Mathematics
(<i>r</i>(<i>u</i>),<i>s</i>(u))-Laplacian operator
Palais-Smale condition
monotone operator
regularized problem
weak solution
title The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-Problems
title_full The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-Problems
title_fullStr The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-Problems
title_full_unstemmed The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-Problems
title_short The Existence of Solutions for Local Dirichlet (<i>r</i>(<i>u</i>),<i>s</i>(<i>u</i>))-Problems
title_sort existence of solutions for local dirichlet i r i i u i i s i i u i problems
topic (<i>r</i>(<i>u</i>),<i>s</i>(u))-Laplacian operator
Palais-Smale condition
monotone operator
regularized problem
weak solution
url https://www.mdpi.com/2227-7390/10/2/237
work_keys_str_mv AT calogerovetro theexistenceofsolutionsforlocaldirichletiriiuiisiiuiproblems
AT calogerovetro existenceofsolutionsforlocaldirichletiriiuiisiiuiproblems