Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems

<p>Abstract</p> <p>This paper is devoted to study the existence of periodic solutions of the second-order equation <inline-formula> <graphic file="1687-2770-2010-626054-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1687-...

Full description

Bibliographic Details
Main Authors: Ma Ruyun, Gao Chenghua, Chen Ruipeng
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2010/626054
_version_ 1818882024549646336
author Ma Ruyun
Gao Chenghua
Chen Ruipeng
author_facet Ma Ruyun
Gao Chenghua
Chen Ruipeng
author_sort Ma Ruyun
collection DOAJ
description <p>Abstract</p> <p>This paper is devoted to study the existence of periodic solutions of the second-order equation <inline-formula> <graphic file="1687-2770-2010-626054-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1687-2770-2010-626054-i2.gif"/></inline-formula> is a Carath&#233;odory function, by combining a new expression of Green's function together with Dancer's global bifurcation theorem. Our main results are sharp and improve the main results by Torres (2003).</p>
first_indexed 2024-12-19T15:11:11Z
format Article
id doaj.art-2d83e79f99c0418e86c5774f7c7fd2b3
institution Directory Open Access Journal
issn 1687-2762
1687-2770
language English
last_indexed 2024-12-19T15:11:11Z
publishDate 2010-01-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-2d83e79f99c0418e86c5774f7c7fd2b32022-12-21T20:16:18ZengSpringerOpenBoundary Value Problems1687-27621687-27702010-01-0120101626054Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value ProblemsMa RuyunGao ChenghuaChen Ruipeng<p>Abstract</p> <p>This paper is devoted to study the existence of periodic solutions of the second-order equation <inline-formula> <graphic file="1687-2770-2010-626054-i1.gif"/></inline-formula>, where <inline-formula> <graphic file="1687-2770-2010-626054-i2.gif"/></inline-formula> is a Carath&#233;odory function, by combining a new expression of Green's function together with Dancer's global bifurcation theorem. Our main results are sharp and improve the main results by Torres (2003).</p>http://www.boundaryvalueproblems.com/content/2010/626054
spellingShingle Ma Ruyun
Gao Chenghua
Chen Ruipeng
Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems
Boundary Value Problems
title Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems
title_full Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems
title_fullStr Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems
title_full_unstemmed Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems
title_short Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems
title_sort existence of positive solutions of nonlinear second order periodic boundary value problems
url http://www.boundaryvalueproblems.com/content/2010/626054
work_keys_str_mv AT maruyun existenceofpositivesolutionsofnonlinearsecondorderperiodicboundaryvalueproblems
AT gaochenghua existenceofpositivesolutionsofnonlinearsecondorderperiodicboundaryvalueproblems
AT chenruipeng existenceofpositivesolutionsofnonlinearsecondorderperiodicboundaryvalueproblems