Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends

We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.

Bibliographic Details
Main Authors: Kumar, Pradip, Mohanty, Sai Rasmi Ranjan
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/
_version_ 1797517852322824192
author Kumar, Pradip
Mohanty, Sai Rasmi Ranjan
author_facet Kumar, Pradip
Mohanty, Sai Rasmi Ranjan
author_sort Kumar, Pradip
collection DOAJ
description We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.
first_indexed 2024-03-10T07:21:58Z
format Article
id doaj.art-2d875fb89cfe481490f78556424edf45
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-10T07:21:58Z
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-2d875fb89cfe481490f78556424edf452023-11-22T14:31:08ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G101683169010.5802/crmath.52510.5802/crmath.525Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of EndsKumar, Pradip0Mohanty, Sai Rasmi Ranjan1Department of Mathematics, Shiv Nadar Institute of Eminence, Deemed to be University, Dadri 201314, Uttar Pradesh, IndiaDepartment of Mathematics, Shiv Nadar Institute of Eminence, Deemed to be University, Dadri 201314, Uttar Pradesh, IndiaWe prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/complete maxfacemaximal mapzero mean curvature surfaces
spellingShingle Kumar, Pradip
Mohanty, Sai Rasmi Ranjan
Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
Comptes Rendus. Mathématique
complete maxface
maximal map
zero mean curvature surfaces
title Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
title_full Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
title_fullStr Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
title_full_unstemmed Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
title_short Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
title_sort genus zero complete maximal maps and maxfaces with an arbitrary number of ends
topic complete maxface
maximal map
zero mean curvature surfaces
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/
work_keys_str_mv AT kumarpradip genuszerocompletemaximalmapsandmaxfaceswithanarbitrarynumberofends
AT mohantysairasmiranjan genuszerocompletemaximalmapsandmaxfaceswithanarbitrarynumberofends