Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/ |
_version_ | 1797517852322824192 |
---|---|
author | Kumar, Pradip Mohanty, Sai Rasmi Ranjan |
author_facet | Kumar, Pradip Mohanty, Sai Rasmi Ranjan |
author_sort | Kumar, Pradip |
collection | DOAJ |
description | We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface. |
first_indexed | 2024-03-10T07:21:58Z |
format | Article |
id | doaj.art-2d875fb89cfe481490f78556424edf45 |
institution | Directory Open Access Journal |
issn | 1778-3569 |
language | English |
last_indexed | 2024-03-10T07:21:58Z |
publishDate | 2023-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj.art-2d875fb89cfe481490f78556424edf452023-11-22T14:31:08ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G101683169010.5802/crmath.52510.5802/crmath.525Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of EndsKumar, Pradip0Mohanty, Sai Rasmi Ranjan1Department of Mathematics, Shiv Nadar Institute of Eminence, Deemed to be University, Dadri 201314, Uttar Pradesh, IndiaDepartment of Mathematics, Shiv Nadar Institute of Eminence, Deemed to be University, Dadri 201314, Uttar Pradesh, IndiaWe prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/complete maxfacemaximal mapzero mean curvature surfaces |
spellingShingle | Kumar, Pradip Mohanty, Sai Rasmi Ranjan Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends Comptes Rendus. Mathématique complete maxface maximal map zero mean curvature surfaces |
title | Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends |
title_full | Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends |
title_fullStr | Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends |
title_full_unstemmed | Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends |
title_short | Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends |
title_sort | genus zero complete maximal maps and maxfaces with an arbitrary number of ends |
topic | complete maxface maximal map zero mean curvature surfaces |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/ |
work_keys_str_mv | AT kumarpradip genuszerocompletemaximalmapsandmaxfaceswithanarbitrarynumberofends AT mohantysairasmiranjan genuszerocompletemaximalmapsandmaxfaceswithanarbitrarynumberofends |