Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure
The applicability of the three steps systematic parametrization procedure (3SSPP) to develop a force field for primary amines was evaluated in the present work. Previous simulations of primary amines show that current force fields (FF) can underestimate some experimental values under room conditions...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute for Condensed Matter Physics
2023-05-01
|
Series: | Condensed Matter Physics |
Subjects: | |
Online Access: | https://doi.org/10.5488/CMP.26.23603 |
_version_ | 1797820287106940928 |
---|---|
author | H. Espinosa-Jiménez A. B. Salazar-Arriaga H. Dominguez |
author_facet | H. Espinosa-Jiménez A. B. Salazar-Arriaga H. Dominguez |
author_sort | H. Espinosa-Jiménez |
collection | DOAJ |
description | The applicability of the three steps systematic parametrization procedure (3SSPP) to develop a force field for primary amines was evaluated in the present work. Previous simulations of primary amines show that current force fields (FF) can underestimate some experimental values under room conditions. Therefore, we propose a new set of parameters, for an united atom (UA) model, that can be used for short and long amines which predict correctly thermodynamic and dynamical properties. Following the 3SSPP methodology, the partial charges are chosen to match the experimental dielectric constant whereas the Lennard-Jones (LJ) parameters, ε and σ, are fitted to reproduce the surface tension at the vapor-liquid interface and the liquid density, respectively. Simulations were initially conducted for the propylamine molecule by introducing three different types of carbon atoms, C_α and C_β, with electric charges, and C_n, without charge. Then, modifying the charges of the carbons and using the transferable LJ parameters, the new set of constants for long amines were found. The results show good agreement for the experimental dielectric constant and mass density with a percentage error less than 1% surface tension the error is up to 4% ethylamine, the new charges were obtained from a fitting function calculated from the long amines results. For these molecules, the values of the dielectric constant and the surface tension present errors of the order of 10% with the experimental data. Miscibility of the amines was also tested with the new parameters and the results show reasonable agreement with experiments. |
first_indexed | 2024-03-13T09:36:09Z |
format | Article |
id | doaj.art-2d8b201513d34dffbfcc281a0e580536 |
institution | Directory Open Access Journal |
issn | 1607-324X 2224-9079 |
language | English |
last_indexed | 2024-03-13T09:36:09Z |
publishDate | 2023-05-01 |
publisher | Institute for Condensed Matter Physics |
record_format | Article |
series | Condensed Matter Physics |
spelling | doaj.art-2d8b201513d34dffbfcc281a0e5805362023-05-25T13:22:57ZengInstitute for Condensed Matter PhysicsCondensed Matter Physics1607-324X2224-90792023-05-012622360310.5488/CMP.26.23603Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedureH. Espinosa-JiménezA. B. Salazar-ArriagaH. DominguezThe applicability of the three steps systematic parametrization procedure (3SSPP) to develop a force field for primary amines was evaluated in the present work. Previous simulations of primary amines show that current force fields (FF) can underestimate some experimental values under room conditions. Therefore, we propose a new set of parameters, for an united atom (UA) model, that can be used for short and long amines which predict correctly thermodynamic and dynamical properties. Following the 3SSPP methodology, the partial charges are chosen to match the experimental dielectric constant whereas the Lennard-Jones (LJ) parameters, ε and σ, are fitted to reproduce the surface tension at the vapor-liquid interface and the liquid density, respectively. Simulations were initially conducted for the propylamine molecule by introducing three different types of carbon atoms, C_α and C_β, with electric charges, and C_n, without charge. Then, modifying the charges of the carbons and using the transferable LJ parameters, the new set of constants for long amines were found. The results show good agreement for the experimental dielectric constant and mass density with a percentage error less than 1% surface tension the error is up to 4% ethylamine, the new charges were obtained from a fitting function calculated from the long amines results. For these molecules, the values of the dielectric constant and the surface tension present errors of the order of 10% with the experimental data. Miscibility of the amines was also tested with the new parameters and the results show reasonable agreement with experiments.https://doi.org/10.5488/CMP.26.23603aminesforce fieldlennard-jones parameterschargesmolecular dynamics |
spellingShingle | H. Espinosa-Jiménez A. B. Salazar-Arriaga H. Dominguez Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure Condensed Matter Physics amines force field lennard-jones parameters charges molecular dynamics |
title | Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure |
title_full | Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure |
title_fullStr | Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure |
title_full_unstemmed | Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure |
title_short | Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure |
title_sort | development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure |
topic | amines force field lennard-jones parameters charges molecular dynamics |
url | https://doi.org/10.5488/CMP.26.23603 |
work_keys_str_mv | AT hespinosajimenez developmentofanewforcefieldforthefamilyofprimaryaliphaticaminesusingthethreestepssystematicparameterizationprocedure AT absalazararriaga developmentofanewforcefieldforthefamilyofprimaryaliphaticaminesusingthethreestepssystematicparameterizationprocedure AT hdominguez developmentofanewforcefieldforthefamilyofprimaryaliphaticaminesusingthethreestepssystematicparameterizationprocedure |