Derivation of familial iPSC lines from three ASD patients carrying NRXN1α+/− and two controls (NUIGi022-A, NUIGi022-B; NUIGi023-A, NUIGi023-B; NUIGi025-A, NUIGi025-B; NUIGi024-A, NUIGi024-B; NUIGi026-A, NUIGi026-B)

NRXN1 copy number variation is a rare genetic factor commonly shared among autism spectrum disorder (ASD), schizophrenia, intellectual disability, epilepsy and developmental delay. Human induced pluripotent stem cells (iPSCs) are essential for disease modeling and drug discovery, but familial cases...

Full description

Bibliographic Details
Main Authors: Yicheng Ding, Berta Marcó de la Cruz, Yawen Xia, Min Liu, Yin Lu, Veronica McInerney, Janusz Krawczyk, Sally A. Lynch, Linda Howard, Timothy O'Brien, Louise Gallagher, Sanbing Shen
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Stem Cell Research
Online Access:http://www.sciencedirect.com/science/article/pii/S1873506119302831
Description
Summary:NRXN1 copy number variation is a rare genetic factor commonly shared among autism spectrum disorder (ASD), schizophrenia, intellectual disability, epilepsy and developmental delay. Human induced pluripotent stem cells (iPSCs) are essential for disease modeling and drug discovery, but familial cases are particularly rare. We report here the derivation of familial iPSC lines from two controls and three ASD patients carrying NRXN1α+/−, using a non-integrating Sendai viral kit. The genotype and karyotype of the resulting iPSCs were validated by whole genome SNP array. All iPSC lines expressed comparable levels of pluripotency markers and could be differentiated into three germ layers.
ISSN:1873-5061