基于嗅觉可视化技术的食用植物油分类识别Classification and recognition of edible vegetable oils based on olfactory visualization technology
为实现山茶油与3种常见食用植物油(菜籽油、大豆油和玉米油)的区分,制备可视化传感器阵列,采用嗅觉可视化技术对4种不同种类的食用植物油进行分类识别。采用主成分分析(PCA)对4种油样的特征数据进行降维,然后将降维后的数据导入K近邻(KNN)、极限学习机(ELM)、支持向量机(SVM) 3种分类模型中进行模型参数优化,对比了3种分类模型的分类结果。结果表明:建立的SVM分类模型性能最优,当输入主成分向量数为7、c=1.741 1、g=4.549 8时,SVM分类模型的测试集分类识别准确率为95.8%,五折交叉验证准确率为89.6%。制得的可视化传感器阵列可以实现4种食用植物油的分类识别,嗅觉可视化...
Main Author: | 杨干, 李大鹏,文韬,蒋涵,龚中良 YANG Gan, LI Dapeng, WEN Tao, JIANG Han, GONG Zhongliang |
---|---|
Format: | Article |
Language: | English |
Published: |
中粮工科(西安)国际工程有限公司
2023-11-01
|
Series: | Zhongguo youzhi |
Subjects: | |
Online Access: | http://tg.chinaoils.cn/zgyz/ch/reader/create_pdf.aspx?file_no=20231117&flag=1 |
Similar Items
-
红外光谱快速识别食用植物油种类的研究Fast identification of edible vegetable oil kinds by infrared spectroscopy
by: 接昭玮1, 李绅2, 汪睿璇3,王继芬1,张震1, 徐晓杰4,周娣4,石学军4 JIE Zhaowei1, LI Shen2, WANG Ruixuan3, WANG Jifen1, ZHANG Zhen1, XU Xiaojie4, ZHOU Di4, SHI Xuejun4
Published: (2023-07-01) -
分子光谱技术结合深度学习模型识别食用植物油种类Identifying types of edible vegetable oil by molecular spectroscopic technology combined with deep learning model
by: 汤睿阳,王继芬 TANG Ruiyang, WANG Jifen
Published: (2023-10-01) -
我国食用植物油供给现状分析及未来发展战略研究Present situation of edible vegetable oil supply in China and its future development strategy
by: 张洋1,严茂林2,葛玮玮1,陈畅1,张志丹2,田恬2,吴成亮1 ZHANG Yang1, YAN Maolin2, GE Weiwei1, CHEN Chang1, ZHANG Zhidan2, TIAN Tian2, WU Chengliang1
Published: (2022-04-01) -
基于数据融合策略植物油光谱模式的识别Spectral pattern recognition of vegetable oils based on data fusion strategy
by: 邱薇纶1,周燕舞2,石孟良2 QIU Weilun1, ZHOU Yanwu2, SHI Mengliang2
Published: (2023-07-01) -
Contrast experiments of two SVM identification methods of haze(2个SVM霾识别预报模型的对比试验)
by: ZHENGZhaoxia(郑朝霞), et al.
Published: (2015-12-01)