Summary: | For the problem of hydroacoustic communication constraints in multi-AUV leader follower formation, this paper designs a formation control method combining CNN-LSTM prediction and backstepping sliding mode control. First, a feedback linearization method is used to transform the AUV nonlinear model into a second-order integral model; then, the influence of hydroacoustic communication constraints on the multi-AUV formation control problem is analyzed, and a sliding window-based formation prediction control strategy is designed; for the characteristics of AUV motion trajectory with certain temporal order, the CNN-LSTM prediction model is selected to predict the trajectory state of the leader follower and compensate the effect of communication delay on formation control, and combine the backstepping method and sliding mode control to design the formation controller. Finally, the simulation experimental results show that the proposed CNN-LSTM prediction and backstepping sliding mode control can improve the effect of hydroacoustic communication constraints on formation control.
|