Summary: | Brain disorders are often investigated in isolation, but very different conclusions might be reached when studies directly contrast multiple disorders. Here, we illustrate this in the context of specific learning disorders, such as dyscalculia and dyslexia. While children with dyscalculia show deficits in arithmetic, children with dyslexia present with reading difficulties. Furthermore, the comorbidity between dyslexia and dyscalculia is surprisingly high. Different hypotheses have been proposed on the origin of these disorders (number processing deficits in dyscalculia, phonological deficits in dyslexia) but these have never been directly contrasted in one brain imaging study. Therefore, we compared the brain activity of children with dyslexia, children with dyscalculia, children with comorbid dyslexia/dyscalculia and healthy controls during arithmetic in a design that allowed us to disentangle various processes that might be associated with the specific or common neural origins of these learning disorders.Participants were 62 children aged 9 to 12, 39 of whom had been clinically diagnosed with a specific learning disorder (dyscalculia and/or dyslexia). All children underwent fMRI scanning while performing an arithmetic task in different formats (dot arrays, digits and number words). At the behavioral level, children with dyscalculia showed lower accuracy when subtracting dot arrays, and all children with learning disorders were slower in responding compared to typically developing children (especially in symbolic formats). However, at the neural level, analyses pointed towards substantial neural similarity between children with learning disorders: Control children demonstrated higher activation levels in frontal and parietal areas than the three groups of children with learning disorders, regardless of the disorder. A direct comparison between the groups of children with learning disorders revealed similar levels of neural activation throughout the brain across these groups. Multivariate subject generalization analyses were used to statistically test the degree of similarity, and confirmed that the neural activation patterns of children with dyslexia, dyscalculia and dyslexia/dyscalculia were highly similar in how they deviated from neural activation patterns in control children. Collectively, these results suggest that, despite differences at the behavioral level, the brain activity profiles of children with different learning disorders during arithmetic may be more similar than initially thought. Keywords: Arithmetic, Children, Dyscalculia, Dyslexia, fMRI
|