Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: <i>Obba rivulosa</i> and <i>Gelatoporia subvermispora</i>

The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, <i>Obba rivulosa</i> and <i>Gelatoporia...

Full description

Bibliographic Details
Main Authors: Mila Marinovíc, Marcos Di Falco, Maria Victoria Aguilar Pontes, András Gorzsás, Adrian Tsang, Ronald P. de Vries, Miia R. Mäkelä, Kristiina Hildén
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/12/8/1017
Description
Summary:The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, <i>Obba rivulosa</i> and <i>Gelatoporia subvermispora</i>, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.
ISSN:2218-273X