Аналіз особливостей використання ресурсів мікроконтролера для розпізнавання мовлення

В роботі виконано аналіз використання обчислювальних ресурсів мікроконтролера для машинного навчання та розпізнавання голосу. Поставлено експеримент для визначення залежності часу розпізнавання ключового слова, об’єму використаної оперативної пам’яті та пам’яті програм в залежності від кількості ме...

Full description

Bibliographic Details
Main Authors: Anna Romanivna Ryzhova, Yurii Oleksiiovych Onykiienko
Format: Article
Language:English
Published: Igor Sikorsky Kyiv Polytechnic Institute 2022-08-01
Series:Mìkrosistemi, Elektronìka ta Akustika
Subjects:
Online Access:http://elc.kpi.ua/article/view/265406
Description
Summary:В роботі виконано аналіз використання обчислювальних ресурсів мікроконтролера для машинного навчання та розпізнавання голосу. Поставлено експеримент для визначення залежності часу розпізнавання ключового слова, об’єму використаної оперативної пам’яті та пам’яті програм в залежності від кількості мел-частотних кепстральних коефіцієнтів та типу згорткової нейронної мережі. Для проведення експерименту використано плату розробки Arduino Nano 33 BLE Sense. Модель нейронної мережі створено та треновано на програмній платформі Edge Impulse. В результаті аналізу встановлено, що пам’яті 32-х бітного мікроконтролера достатньо для обчислень та використання нейронної мережі. Однак час класифікації ключового слова складає приблизно 0,3 с, відповідно розпізнавання довгих фраз може зайняти декілька секунд, що не завжди є прийнятним.
ISSN:2523-4447
2523-4455