Summary: | Wood encodes environmental information that can be recovered through the study of tree-ring width and wood anatomical variables such as lumen area or cell-wall thickness. Anatomical variables often provide a stronger hydroclimate signal than tree-ring width, but they show a low tree-to-tree coherence. We investigate the sources of variation in tree-ring width, lumen area, and cell-wall thickness in three pine species inhabiting sites with contrasting climate conditions: <i>Pinus lumholtzii</i> in wet-summer northern Mexico, and <i>Pinus halepensis</i> and <i>Pinus sylvestris</i> in dry-summer north-eastern Spain. We quantified the amount of variance of these three variables explained by spring and summer water balance and how it varied among trees. Wood anatomical variables accounted for a larger inter-individual variability than tree-ring width data. Anatomical traits responded to hydroclimate more individualistically than tree-ring width. This individualistic response represents an important issue in long-term studies on wood anatomical characteristics. We emphasized the degree of variation among individuals of the same population, which has far-reaching implications for understanding tree species’ responses to climate change. Dendroclimatic and wood anatomical studies should focus on trees rather than on the mean population series.
|