Summary: | Water level (WL) and terrestrial water storage (TWS) are two important indicators for early alerts of hydrological extremes. Their variation is governed by precipitation under monsoon variability, in particular in the Mekong river basin, where it is affected by the interaction between the Indian summer monsoon (ISM) and western North Pacific monsoon (WNPM). This study aimed to quantify the contributions of two monsoons to the water levels of four hydrological stations (i.e., My Thuan, Can Tho, Chau Doc and Tan Chau) on the Mekong Delta and the terrestrial water storage of the entire Mekong River basin through relative importance analysis. Three methods—multivariate linear regression; Lindeman, Merenda and Gold (LMG); and the proportional marginal variance decomposition (PMVD) methods—were selected to quantitatively obtain the relative influence of two monsoons on water level and TWS. The results showed that, from 2010 to 2014, the proportions of the ISM impacts on the water level obtained with the three methods ranged from 55.48 to 81.35%, 50.69 to 57.55% and 55.41 to 93.64% via multivariate linear regression, LMG and PMVD, respectively. Further analysis showed that different choices of time spans could lead to different results, indicated that the corresponding proportion would be influenced by other factors, such as El Niño–Southern Oscillation (ENSO). The removal of ENSO further enlarged the relative importance of the ISM, and the mean values of the four stations were increased by 8.78%, 2.04% and 14.92%, respectively, via multivariate linear regression, LMG and PMVD. Meanwhile, based on the analysis of terrestrial water storage, it was found that the impact of the ISM on the whole Mekong River basin was dominant: the proportions of the impact of the ISM on terrestrial water storage increased to 68.79%, 54.60% and 79.43%, which rose by 11.24%, 2.96% and 19.77%, respectively, via linear regression, LMG and PMVD. The increases almost equaled the quantified proportion for the ENSO component. Overall, the novel technique of quantifying the contributions of monsoons to WL and TWS can be applied to the influence of other atmospheric factors or events on hydrological variables in different regions.
|