HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images

We present a dataset of close range hyperspectral images of materials that span the visible and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The data is intended to provide high spectral and spatial resolution reflectance images of 112 materials to study s...

Full description

Bibliographic Details
Main Authors: Haris Ahmad Khan, Sofiane Mihoubi, Benjamin Mathon, Jean-Baptiste Thomas, Jon Yngve Hardeberg
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/7/2045
_version_ 1818036499567869952
author Haris Ahmad Khan
Sofiane Mihoubi
Benjamin Mathon
Jean-Baptiste Thomas
Jon Yngve Hardeberg
author_facet Haris Ahmad Khan
Sofiane Mihoubi
Benjamin Mathon
Jean-Baptiste Thomas
Jon Yngve Hardeberg
author_sort Haris Ahmad Khan
collection DOAJ
description We present a dataset of close range hyperspectral images of materials that span the visible and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The data is intended to provide high spectral and spatial resolution reflectance images of 112 materials to study spatial and spectral textures. In this paper we discuss the calibration of the data and the method for addressing the distortions during image acquisition. We provide a spectral analysis based on non-negative matrix factorization to quantify the spectral complexity of the samples and extend local binary pattern operators to the hyperspectral texture analysis. The results demonstrate that although the spectral complexity of each of the textures is generally low, increasing the number of bands permits better texture classification, with the opponent band local binary pattern feature giving the best performance.
first_indexed 2024-12-10T07:11:55Z
format Article
id doaj.art-2dd8074825d24117ad6f50e28b3e35a1
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-12-10T07:11:55Z
publishDate 2018-06-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-2dd8074825d24117ad6f50e28b3e35a12022-12-22T01:58:01ZengMDPI AGSensors1424-82202018-06-01187204510.3390/s18072045s18072045HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture ImagesHaris Ahmad Khan0Sofiane Mihoubi1Benjamin Mathon2Jean-Baptiste Thomas3Jon Yngve Hardeberg4The Norwegian Colour and Visual Computing Laboratory, NTNU–Norwegian University of Science and Technology, 2815 Gjøvik, NorwayUniv. Lille, CNRS, Centrale Lille, UMR 9189—CRIStAL, Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, FranceUniv. Lille, CNRS, Centrale Lille, UMR 9189—CRIStAL, Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, FranceThe Norwegian Colour and Visual Computing Laboratory, NTNU–Norwegian University of Science and Technology, 2815 Gjøvik, NorwayThe Norwegian Colour and Visual Computing Laboratory, NTNU–Norwegian University of Science and Technology, 2815 Gjøvik, NorwayWe present a dataset of close range hyperspectral images of materials that span the visible and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The data is intended to provide high spectral and spatial resolution reflectance images of 112 materials to study spatial and spectral textures. In this paper we discuss the calibration of the data and the method for addressing the distortions during image acquisition. We provide a spectral analysis based on non-negative matrix factorization to quantify the spectral complexity of the samples and extend local binary pattern operators to the hyperspectral texture analysis. The results demonstrate that although the spectral complexity of each of the textures is generally low, increasing the number of bands permits better texture classification, with the opponent band local binary pattern feature giving the best performance.http://www.mdpi.com/1424-8220/18/7/2045hyperspectral imagespectral analysiseffective dimensionspectral LBPtexturedatasetreflectance
spellingShingle Haris Ahmad Khan
Sofiane Mihoubi
Benjamin Mathon
Jean-Baptiste Thomas
Jon Yngve Hardeberg
HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images
Sensors
hyperspectral image
spectral analysis
effective dimension
spectral LBP
texture
dataset
reflectance
title HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images
title_full HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images
title_fullStr HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images
title_full_unstemmed HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images
title_short HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images
title_sort hytexila high resolution visible and near infrared hyperspectral texture images
topic hyperspectral image
spectral analysis
effective dimension
spectral LBP
texture
dataset
reflectance
url http://www.mdpi.com/1424-8220/18/7/2045
work_keys_str_mv AT harisahmadkhan hytexilahighresolutionvisibleandnearinfraredhyperspectraltextureimages
AT sofianemihoubi hytexilahighresolutionvisibleandnearinfraredhyperspectraltextureimages
AT benjaminmathon hytexilahighresolutionvisibleandnearinfraredhyperspectraltextureimages
AT jeanbaptistethomas hytexilahighresolutionvisibleandnearinfraredhyperspectraltextureimages
AT jonyngvehardeberg hytexilahighresolutionvisibleandnearinfraredhyperspectraltextureimages