The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds

<p>This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to...

Full description

Bibliographic Details
Main Authors: A. Solomon, G. de Boer, J. M. Creamean, A. McComiskey, M. D. Shupe, M. Maahn, C. Cox
Format: Article
Language:English
Published: Copernicus Publications 2018-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/17047/2018/acp-18-17047-2018.pdf
_version_ 1818050975722635264
author A. Solomon
A. Solomon
G. de Boer
G. de Boer
J. M. Creamean
J. M. Creamean
J. M. Creamean
A. McComiskey
M. D. Shupe
M. D. Shupe
M. Maahn
M. Maahn
C. Cox
C. Cox
author_facet A. Solomon
A. Solomon
G. de Boer
G. de Boer
J. M. Creamean
J. M. Creamean
J. M. Creamean
A. McComiskey
M. D. Shupe
M. D. Shupe
M. Maahn
M. Maahn
C. Cox
C. Cox
author_sort A. Solomon
collection DOAJ
description <p>This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INPs causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INPs at the base of the cloud-driven mixed layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.</p>
first_indexed 2024-12-10T11:02:01Z
format Article
id doaj.art-2ddd3324af0a42b19ecec6835470c9df
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-10T11:02:01Z
publishDate 2018-12-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-2ddd3324af0a42b19ecec6835470c9df2022-12-22T01:51:39ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-12-0118170471705910.5194/acp-18-17047-2018The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus cloudsA. Solomon0A. Solomon1G. de Boer2G. de Boer3J. M. Creamean4J. M. Creamean5J. M. Creamean6A. McComiskey7M. D. Shupe8M. D. Shupe9M. Maahn10M. Maahn11C. Cox12C. Cox13Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USAnow at: Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA<p>This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INPs causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INPs at the base of the cloud-driven mixed layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.</p>https://www.atmos-chem-phys.net/18/17047/2018/acp-18-17047-2018.pdf
spellingShingle A. Solomon
A. Solomon
G. de Boer
G. de Boer
J. M. Creamean
J. M. Creamean
J. M. Creamean
A. McComiskey
M. D. Shupe
M. D. Shupe
M. Maahn
M. Maahn
C. Cox
C. Cox
The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
Atmospheric Chemistry and Physics
title The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
title_full The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
title_fullStr The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
title_full_unstemmed The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
title_short The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
title_sort relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in arctic mixed phase stratocumulus clouds
url https://www.atmos-chem-phys.net/18/17047/2018/acp-18-17047-2018.pdf
work_keys_str_mv AT asolomon therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT asolomon therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT gdeboer therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT gdeboer therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT jmcreamean therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT jmcreamean therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT jmcreamean therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT amccomiskey therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mdshupe therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mdshupe therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mmaahn therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mmaahn therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT ccox therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT ccox therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT asolomon relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT asolomon relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT gdeboer relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT gdeboer relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT jmcreamean relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT jmcreamean relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT jmcreamean relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT amccomiskey relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mdshupe relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mdshupe relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mmaahn relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT mmaahn relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT ccox relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds
AT ccox relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds