The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
<p>This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-12-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/17047/2018/acp-18-17047-2018.pdf |
_version_ | 1818050975722635264 |
---|---|
author | A. Solomon A. Solomon G. de Boer G. de Boer J. M. Creamean J. M. Creamean J. M. Creamean A. McComiskey M. D. Shupe M. D. Shupe M. Maahn M. Maahn C. Cox C. Cox |
author_facet | A. Solomon A. Solomon G. de Boer G. de Boer J. M. Creamean J. M. Creamean J. M. Creamean A. McComiskey M. D. Shupe M. D. Shupe M. Maahn M. Maahn C. Cox C. Cox |
author_sort | A. Solomon |
collection | DOAJ |
description | <p>This study investigates the interactions between cloud dynamics and aerosols
in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus
clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen
because it allows the cloud to form in response to radiative cooling
starting from a cloud-free state, rather than requiring the cloud ice and
liquid to adjust to an initial cloudy state. Sensitivity studies are used to
identify whether there are buffering feedbacks that limit the impact of
aerosol perturbations. The results of this study indicate that perturbations
in ice nucleating particles (INPs) dominate over cloud condensation nuclei
(CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs
results in an increase in the cloud-top longwave cooling rate, even though
the droplet effective radius increases and the cloud emissivity decreases.
The dominant effect of ice in the simulated mixed-phase cloud is a thinning
rather than a glaciation, causing the mixed-phase clouds to radiate as a
grey body and the radiative properties of the cloud to be more sensitive to
aerosol perturbations. It is demonstrated that allowing prognostic CCN and
INPs causes a layering of the aerosols, with increased concentrations of CCN
above cloud top and increased concentrations of INPs at the base of the
cloud-driven mixed layer. This layering contributes to the maintenance of
the cloud liquid, which drives the dynamics of the cloud system.</p> |
first_indexed | 2024-12-10T11:02:01Z |
format | Article |
id | doaj.art-2ddd3324af0a42b19ecec6835470c9df |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-10T11:02:01Z |
publishDate | 2018-12-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-2ddd3324af0a42b19ecec6835470c9df2022-12-22T01:51:39ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-12-0118170471705910.5194/acp-18-17047-2018The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus cloudsA. Solomon0A. Solomon1G. de Boer2G. de Boer3J. M. Creamean4J. M. Creamean5J. M. Creamean6A. McComiskey7M. D. Shupe8M. D. Shupe9M. Maahn10M. Maahn11C. Cox12C. Cox13Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USAnow at: Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USAEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA<p>This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INPs causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INPs at the base of the cloud-driven mixed layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.</p>https://www.atmos-chem-phys.net/18/17047/2018/acp-18-17047-2018.pdf |
spellingShingle | A. Solomon A. Solomon G. de Boer G. de Boer J. M. Creamean J. M. Creamean J. M. Creamean A. McComiskey M. D. Shupe M. D. Shupe M. Maahn M. Maahn C. Cox C. Cox The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds Atmospheric Chemistry and Physics |
title | The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds |
title_full | The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds |
title_fullStr | The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds |
title_full_unstemmed | The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds |
title_short | The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds |
title_sort | relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in arctic mixed phase stratocumulus clouds |
url | https://www.atmos-chem-phys.net/18/17047/2018/acp-18-17047-2018.pdf |
work_keys_str_mv | AT asolomon therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT asolomon therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT gdeboer therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT gdeboer therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT jmcreamean therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT jmcreamean therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT jmcreamean therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT amccomiskey therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mdshupe therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mdshupe therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mmaahn therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mmaahn therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT ccox therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT ccox therelativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT asolomon relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT asolomon relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT gdeboer relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT gdeboer relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT jmcreamean relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT jmcreamean relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT jmcreamean relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT amccomiskey relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mdshupe relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mdshupe relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mmaahn relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT mmaahn relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT ccox relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds AT ccox relativeimpactofcloudcondensationnucleiandicenucleatingparticleconcentrationsonphasepartitioninginarcticmixedphasestratocumulusclouds |