Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-Section
This research investigates the cross-wind aeroelastic effects of tall buildings with hexagonal cross-sections by using aeroelastic models with multiple-degree-of-freedom (MDOF). Cross-wind displacement and acceleration responses at the top of each model are measured using the wind tunnel test. The a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/14/6/996 |
_version_ | 1797596152725504000 |
---|---|
author | Yuhui Fan Jingwen Lu Lei Wang |
author_facet | Yuhui Fan Jingwen Lu Lei Wang |
author_sort | Yuhui Fan |
collection | DOAJ |
description | This research investigates the cross-wind aeroelastic effects of tall buildings with hexagonal cross-sections by using aeroelastic models with multiple-degree-of-freedom (MDOF). Cross-wind displacement and acceleration responses at the top of each model are measured using the wind tunnel test. The aerodynamic damping ratios for the two representative wind directions are identified by analyzing the measured responses using the random decrement technique. Results show that large-amplitude vortex-induced vibrations occur for one of the representative wind directions where the vertex of the hexagonal model is against the approaching wind, while there is no significant VIV observed for the other representative wind direction where the face of the hexagonal model is perpendicular to the approaching wind. The most dangerous wind direction is then identified based on the discussion. Two expressions for the cross-wind aerodynamic damping ratio are established for the two wind representative wind directions. The two equations can be used in engineering practice to estimate the cross-wind aerodynamic damping ratio of hexagonal tall buildings. |
first_indexed | 2024-03-11T02:46:34Z |
format | Article |
id | doaj.art-2dde262a4ecb413096b4c1f840aca58e |
institution | Directory Open Access Journal |
issn | 2073-4433 |
language | English |
last_indexed | 2024-03-11T02:46:34Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Atmosphere |
spelling | doaj.art-2dde262a4ecb413096b4c1f840aca58e2023-11-18T09:14:47ZengMDPI AGAtmosphere2073-44332023-06-0114699610.3390/atmos14060996Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-SectionYuhui Fan0Jingwen Lu1Lei Wang2School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, ChinaSchool of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, ChinaSchool of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, ChinaThis research investigates the cross-wind aeroelastic effects of tall buildings with hexagonal cross-sections by using aeroelastic models with multiple-degree-of-freedom (MDOF). Cross-wind displacement and acceleration responses at the top of each model are measured using the wind tunnel test. The aerodynamic damping ratios for the two representative wind directions are identified by analyzing the measured responses using the random decrement technique. Results show that large-amplitude vortex-induced vibrations occur for one of the representative wind directions where the vertex of the hexagonal model is against the approaching wind, while there is no significant VIV observed for the other representative wind direction where the face of the hexagonal model is perpendicular to the approaching wind. The most dangerous wind direction is then identified based on the discussion. Two expressions for the cross-wind aerodynamic damping ratio are established for the two wind representative wind directions. The two equations can be used in engineering practice to estimate the cross-wind aerodynamic damping ratio of hexagonal tall buildings.https://www.mdpi.com/2073-4433/14/6/996tall buildingshexagonal sectionwind tunnel testvortex-induced vibrationaerodynamic damping |
spellingShingle | Yuhui Fan Jingwen Lu Lei Wang Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-Section Atmosphere tall buildings hexagonal section wind tunnel test vortex-induced vibration aerodynamic damping |
title | Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-Section |
title_full | Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-Section |
title_fullStr | Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-Section |
title_full_unstemmed | Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-Section |
title_short | Cross-Wind Aeroelastic Effects of Tall Buildings with a Hexagonal Cross-Section |
title_sort | cross wind aeroelastic effects of tall buildings with a hexagonal cross section |
topic | tall buildings hexagonal section wind tunnel test vortex-induced vibration aerodynamic damping |
url | https://www.mdpi.com/2073-4433/14/6/996 |
work_keys_str_mv | AT yuhuifan crosswindaeroelasticeffectsoftallbuildingswithahexagonalcrosssection AT jingwenlu crosswindaeroelasticeffectsoftallbuildingswithahexagonalcrosssection AT leiwang crosswindaeroelasticeffectsoftallbuildingswithahexagonalcrosssection |