Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable Mobile Video Systems

Mobile devices are becoming ever more popular for streaming videos, which account for the majority of all the data traffic on the Internet. Memory is a critical component in mobile video processing systems, increasingly dominating the power consumption. Today, memory designers are still focusing on...

Full description

Bibliographic Details
Main Authors: Jonathon Edstrom, Yifu Gong, Ali Ahmad Haidous, Brittney Humphrey, Mark E. Mccourt, Yiwen Xu, Jinhui Wang, Na Gong
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8681040/
Description
Summary:Mobile devices are becoming ever more popular for streaming videos, which account for the majority of all the data traffic on the Internet. Memory is a critical component in mobile video processing systems, increasingly dominating the power consumption. Today, memory designers are still focusing on hardware-level power optimization techniques, which usually come with significant implementation cost (e.g., silicon area overhead or performance penalty). In this paper, we propose a video content-aware memory technique for power-quality tradeoff from viewer's perspectives. Based on the influence of video macroblock characteristics on the viewer's experience, we develop two simple and effective models-decision tree and logistic regression to enable hardware adaptation. We have also implemented a novel viewer-aware bit-truncation technique which minimizes the impact on the viewer's experience, while introducing energy-quality adaptation to the video storage.
ISSN:2169-3536