A Control Algorithm for Tapering Charging of Li-Ion Battery in Geostationary Satellites

Recently, as the satellite data service market has grown significantly, satellite demand has been rapidly increasing. Demand for geostationary satellites with weather observation, communication broadcasting, and GPS missions is also increasing. Completing the charging process of the Li-ion battery d...

Full description

Bibliographic Details
Main Author: Jeong-Eon Park
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/15/5636
Description
Summary:Recently, as the satellite data service market has grown significantly, satellite demand has been rapidly increasing. Demand for geostationary satellites with weather observation, communication broadcasting, and GPS missions is also increasing. Completing the charging process of the Li-ion battery during the sun period is one of the main tasks of the electrical power system in geostationary satellites. In the case of the electrical power system of low Earth orbit satellites, the Li-ion battery is connected to the DC/DC converter output, and the charging process is completed through CV control. However, in the case of the regulated bus of the DET type, which is mainly used in the electrical power system of geostationary satellites, a Li-ion battery is connected to the input of the DC/DC converter. Therefore, a method other than the CV control of the DC/DC converter is required. This paper proposes a control algorithm for tapering charging of the Li-ion battery in the regulated bus of the DET type for Li-ion battery charge completion operation required by space-level design standards. In addition, the proposed control algorithm is verified through an experiment on a geostationary satellite’s ground electrical test platform. The experiment verified that it has a power conversion efficiency of 99.5% from the solar array to the battery. It has 21 tapering steps at the equinox and 17 tapering steps at the solstice.
ISSN:1996-1073