Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation
In nonlinear ultrasound testing, the relative nonlinear parameter is conveniently measured as a sensitive means of detecting and imaging overall variation of microstructures and damages. Compared to the quadratic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/16/13/4739 |
_version_ | 1797591334266077184 |
---|---|
author | Hyunjo Jeong Hyojeong Shin Shuzeng Zhang Xiongbing Li |
author_facet | Hyunjo Jeong Hyojeong Shin Shuzeng Zhang Xiongbing Li |
author_sort | Hyunjo Jeong |
collection | DOAJ |
description | In nonlinear ultrasound testing, the relative nonlinear parameter is conveniently measured as a sensitive means of detecting and imaging overall variation of microstructures and damages. Compared to the quadratic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), the cubic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), calculated as the third harmonic amplitude divided by the cube of the fundamental amplitude, has generally a higher value, providing better sensitivity in nonlinear parameter mapping. Since the third harmonic amplitude is about two orders of magnitude lower than the fundamental amplitude, efficient excitation and highly sensitive reception of third harmonic is very important. In this paper, we explore an odd harmonic thickness resonant transducer that meets the requirements for pulse-echo third harmonic generation (THG) measurements. We also address the problem of source nonlinearity that may be present in the measured amplitude of the third harmonic and propose a method to properly correct it. First, we measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> for a series of aluminum specimens using the through-transmission method to observe the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> as a function of specimen thickness and input voltage, and examine the effects of various corrections such as attenuation, diffraction and source nonlinearity. Next, we apply the odd harmonic resonant transducer to pulse-echo THG measurements of precipitation heat-treated specimens. It is shown that such transducer is very effective in generation and detection of fundamental and third harmonics under finite amplitude toneburst excitation. The highly sensitive detectability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> are presented as a function of aging time, and the sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> is compared with that of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><msup><mi>β</mi><mrow><mo>′</mo></mrow></msup></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>. |
first_indexed | 2024-03-11T01:35:58Z |
format | Article |
id | doaj.art-2e3616132ad74113b705106783776b20 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-11T01:35:58Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-2e3616132ad74113b705106783776b202023-11-18T16:59:09ZengMDPI AGMaterials1996-19442023-06-011613473910.3390/ma16134739Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic GenerationHyunjo Jeong0Hyojeong Shin1Shuzeng Zhang2Xiongbing Li3Department of Mechanical Engineering, Wonkwang University, Iksan 54538, Republic of KoreaGraduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju 54896, Republic of KoreaSchool of Traffic and Transportation Engineering, Central South University, Changsha 410083, ChinaSchool of Traffic and Transportation Engineering, Central South University, Changsha 410083, ChinaIn nonlinear ultrasound testing, the relative nonlinear parameter is conveniently measured as a sensitive means of detecting and imaging overall variation of microstructures and damages. Compared to the quadratic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), the cubic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), calculated as the third harmonic amplitude divided by the cube of the fundamental amplitude, has generally a higher value, providing better sensitivity in nonlinear parameter mapping. Since the third harmonic amplitude is about two orders of magnitude lower than the fundamental amplitude, efficient excitation and highly sensitive reception of third harmonic is very important. In this paper, we explore an odd harmonic thickness resonant transducer that meets the requirements for pulse-echo third harmonic generation (THG) measurements. We also address the problem of source nonlinearity that may be present in the measured amplitude of the third harmonic and propose a method to properly correct it. First, we measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> for a series of aluminum specimens using the through-transmission method to observe the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> as a function of specimen thickness and input voltage, and examine the effects of various corrections such as attenuation, diffraction and source nonlinearity. Next, we apply the odd harmonic resonant transducer to pulse-echo THG measurements of precipitation heat-treated specimens. It is shown that such transducer is very effective in generation and detection of fundamental and third harmonics under finite amplitude toneburst excitation. The highly sensitive detectability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> are presented as a function of aging time, and the sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> is compared with that of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><msup><mi>β</mi><mrow><mo>′</mo></mrow></msup></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>.https://www.mdpi.com/1996-1944/16/13/4739harmonic generationthickness resonancecubic nonlinear parametersource nonlinearityprecipitation heat treatment |
spellingShingle | Hyunjo Jeong Hyojeong Shin Shuzeng Zhang Xiongbing Li Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation Materials harmonic generation thickness resonance cubic nonlinear parameter source nonlinearity precipitation heat treatment |
title | Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation |
title_full | Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation |
title_fullStr | Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation |
title_full_unstemmed | Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation |
title_short | Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation |
title_sort | highly sensitive detection of microstructure variation using a thickness resonant transducer and pulse echo third harmonic generation |
topic | harmonic generation thickness resonance cubic nonlinear parameter source nonlinearity precipitation heat treatment |
url | https://www.mdpi.com/1996-1944/16/13/4739 |
work_keys_str_mv | AT hyunjojeong highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration AT hyojeongshin highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration AT shuzengzhang highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration AT xiongbingli highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration |