Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation

In nonlinear ultrasound testing, the relative nonlinear parameter is conveniently measured as a sensitive means of detecting and imaging overall variation of microstructures and damages. Compared to the quadratic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/...

Full description

Bibliographic Details
Main Authors: Hyunjo Jeong, Hyojeong Shin, Shuzeng Zhang, Xiongbing Li
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/13/4739
_version_ 1797591334266077184
author Hyunjo Jeong
Hyojeong Shin
Shuzeng Zhang
Xiongbing Li
author_facet Hyunjo Jeong
Hyojeong Shin
Shuzeng Zhang
Xiongbing Li
author_sort Hyunjo Jeong
collection DOAJ
description In nonlinear ultrasound testing, the relative nonlinear parameter is conveniently measured as a sensitive means of detecting and imaging overall variation of microstructures and damages. Compared to the quadratic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), the cubic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), calculated as the third harmonic amplitude divided by the cube of the fundamental amplitude, has generally a higher value, providing better sensitivity in nonlinear parameter mapping. Since the third harmonic amplitude is about two orders of magnitude lower than the fundamental amplitude, efficient excitation and highly sensitive reception of third harmonic is very important. In this paper, we explore an odd harmonic thickness resonant transducer that meets the requirements for pulse-echo third harmonic generation (THG) measurements. We also address the problem of source nonlinearity that may be present in the measured amplitude of the third harmonic and propose a method to properly correct it. First, we measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> for a series of aluminum specimens using the through-transmission method to observe the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> as a function of specimen thickness and input voltage, and examine the effects of various corrections such as attenuation, diffraction and source nonlinearity. Next, we apply the odd harmonic resonant transducer to pulse-echo THG measurements of precipitation heat-treated specimens. It is shown that such transducer is very effective in generation and detection of fundamental and third harmonics under finite amplitude toneburst excitation. The highly sensitive detectability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> are presented as a function of aging time, and the sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> is compared with that of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><msup><mi>β</mi><mrow><mo>′</mo></mrow></msup></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-11T01:35:58Z
format Article
id doaj.art-2e3616132ad74113b705106783776b20
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-11T01:35:58Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-2e3616132ad74113b705106783776b202023-11-18T16:59:09ZengMDPI AGMaterials1996-19442023-06-011613473910.3390/ma16134739Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic GenerationHyunjo Jeong0Hyojeong Shin1Shuzeng Zhang2Xiongbing Li3Department of Mechanical Engineering, Wonkwang University, Iksan 54538, Republic of KoreaGraduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju 54896, Republic of KoreaSchool of Traffic and Transportation Engineering, Central South University, Changsha 410083, ChinaSchool of Traffic and Transportation Engineering, Central South University, Changsha 410083, ChinaIn nonlinear ultrasound testing, the relative nonlinear parameter is conveniently measured as a sensitive means of detecting and imaging overall variation of microstructures and damages. Compared to the quadratic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), the cubic nonlinear parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>), calculated as the third harmonic amplitude divided by the cube of the fundamental amplitude, has generally a higher value, providing better sensitivity in nonlinear parameter mapping. Since the third harmonic amplitude is about two orders of magnitude lower than the fundamental amplitude, efficient excitation and highly sensitive reception of third harmonic is very important. In this paper, we explore an odd harmonic thickness resonant transducer that meets the requirements for pulse-echo third harmonic generation (THG) measurements. We also address the problem of source nonlinearity that may be present in the measured amplitude of the third harmonic and propose a method to properly correct it. First, we measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> for a series of aluminum specimens using the through-transmission method to observe the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> as a function of specimen thickness and input voltage, and examine the effects of various corrections such as attenuation, diffraction and source nonlinearity. Next, we apply the odd harmonic resonant transducer to pulse-echo THG measurements of precipitation heat-treated specimens. It is shown that such transducer is very effective in generation and detection of fundamental and third harmonics under finite amplitude toneburst excitation. The highly sensitive detectability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> are presented as a function of aging time, and the sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>γ</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> is compared with that of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><msup><mi>β</mi><mrow><mo>′</mo></mrow></msup></mrow><mn>2</mn></msup></mrow></semantics></math></inline-formula>.https://www.mdpi.com/1996-1944/16/13/4739harmonic generationthickness resonancecubic nonlinear parametersource nonlinearityprecipitation heat treatment
spellingShingle Hyunjo Jeong
Hyojeong Shin
Shuzeng Zhang
Xiongbing Li
Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation
Materials
harmonic generation
thickness resonance
cubic nonlinear parameter
source nonlinearity
precipitation heat treatment
title Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation
title_full Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation
title_fullStr Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation
title_full_unstemmed Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation
title_short Highly Sensitive Detection of Microstructure Variation Using a Thickness Resonant Transducer and Pulse-Echo Third Harmonic Generation
title_sort highly sensitive detection of microstructure variation using a thickness resonant transducer and pulse echo third harmonic generation
topic harmonic generation
thickness resonance
cubic nonlinear parameter
source nonlinearity
precipitation heat treatment
url https://www.mdpi.com/1996-1944/16/13/4739
work_keys_str_mv AT hyunjojeong highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration
AT hyojeongshin highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration
AT shuzengzhang highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration
AT xiongbingli highlysensitivedetectionofmicrostructurevariationusingathicknessresonanttransducerandpulseechothirdharmonicgeneration