Cauchy problems for fifth-order KdV equations in weighted Sobolev spaces

In this work we study the initial-value problem for the fifth-order Korteweg-de Vries equation $$ \partial_{t}u+\partial_{x}^{5}u+u^k\partial_{x}u=0, \quad x,t\in \mathbb{R}, \; k=1,2, $$ in weighted Sobolev spaces $H^s(\mathbb{R})\cap L^2(\langle x \rangle^{2r}dx)$. We prove local and glob...

Full description

Bibliographic Details
Main Authors: Eddye Bustamante, Jose Jimenez, Jorge Mejia
Format: Article
Language:English
Published: Texas State University 2015-05-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/141/abstr.html

Similar Items