Long-Term Evaluation of Mesophilic Semi-Continuous Anaerobic Digestion of Olive Mill Solid Waste Pretreated with Steam-Explosion

Steam-explosion is a promising technology for recovering phenolic compounds from olive mill solid waste (OMSW) due to its high impact on the structure of the fibre. Moreover, the recovery of the phenols, which are well-known microbial inhibitors, could improve the subsequent biomethanization of the...

Full description

Bibliographic Details
Main Authors: Antonio Serrano, Fernando G. Fermoso, Bernabé Alonso-Fariñas, Guillermo Rodríguez-Gutiérrez, Sergio López, Juan Fernandez-Bolaños, Rafael Borja
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/11/2222
Description
Summary:Steam-explosion is a promising technology for recovering phenolic compounds from olive mill solid waste (OMSW) due to its high impact on the structure of the fibre. Moreover, the recovery of the phenols, which are well-known microbial inhibitors, could improve the subsequent biomethanization of the dephenolized OMSW to produce energy. However, there is a considerable lack of knowledge about how the remaining phenolic compounds could affect a long-term biomethanization process of steam-exploded OMSW. This work evaluated a semi-continuous mesophilic anaerobic digestion of dephenolized steam-exploited OMSW during a long operational period (275 days), assessing different organic loading rates (OLRs). The process was stable at an OLR of 1 gVS/(L&#183;d), with a specific production rate of 163 &#177; 28 mL CH<sub>4</sub>/(gVS&#183;d). However, the increment of the OLR up to 2 gVS/(L&#183;d) resulted in total exhaust of the methane production. The increment in the propionic acid concentration up to 1486 mg/L could be the main responsible factor for the inhibition. Regardless of the OLR, the concentration of phenolic compounds was always lower than the inhibition limits. Therefore, steam-exploited OMSW could be a suitable substrate for anaerobic digestion at a suitable OLR.
ISSN:1996-1073