Nanostructures for photon management in solar cells

The concurrent development of high-performance materials, new device and system architectures, and nanofabrication processes has driven widespread research and development in the field of nanostructures for photon management in photovoltaics. The fundamental goals of photon management are to reduce...

Full description

Bibliographic Details
Main Authors: Narasimhan Vijay Kris, Cui Yi
Format: Article
Language:English
Published: De Gruyter 2013-07-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2013-0001
Description
Summary:The concurrent development of high-performance materials, new device and system architectures, and nanofabrication processes has driven widespread research and development in the field of nanostructures for photon management in photovoltaics. The fundamental goals of photon management are to reduce incident light reflection, improve absorption, and tailor the optical properties of a device for use in different types of energy conversion systems. Nanostructures rely on a core set of phenomena to attain these goals, including gradation of the refractive index, coupling to waveguide modes through surface structuring, and modification of the photonic band structure of a device. In this review, we present recent developments in the field of nanostructures for photon management in solar cells with applications across different materials and system architectures. We focus both on theoretical and numerical studies and on progress in fabricating solar cells containing photonic nanostructures. We show that nanoscale light management structures have yielded real efficiency gains in many types of photovoltaic devices; however, we note that important work remains to ensure that improved optical performance does not come at the expense of poor electrical properties.
ISSN:2192-8606
2192-8614