Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae
The mitogen-activated protein kinase MoOsm1–mediated osmoregulation pathway plays crucial roles in stress responses, asexual and sexual development, and pathogenicity in Magnaporthe oryzae. Utilizing an affinity purification approach, we identified the putative transcriptional activator MoMsn2 as a...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The American Phytopathological Society
2014-05-01
|
Series: | Molecular Plant-Microbe Interactions |
Online Access: | https://apsjournals.apsnet.org/doi/10.1094/MPMI-09-13-0271-R |
_version_ | 1811261227197792256 |
---|---|
author | Haifeng Zhang Qian Zhao Xianxian Guo Min Guo Zhongqiang Qi Wei Tang Yanhan Dong Wenwu Ye Xiaobo Zheng Ping Wang Zhengguang Zhang |
author_facet | Haifeng Zhang Qian Zhao Xianxian Guo Min Guo Zhongqiang Qi Wei Tang Yanhan Dong Wenwu Ye Xiaobo Zheng Ping Wang Zhengguang Zhang |
author_sort | Haifeng Zhang |
collection | DOAJ |
description | The mitogen-activated protein kinase MoOsm1–mediated osmoregulation pathway plays crucial roles in stress responses, asexual and sexual development, and pathogenicity in Magnaporthe oryzae. Utilizing an affinity purification approach, we identified the putative transcriptional activator MoMsn2 as a protein that interacts with MoOsm1 in vivo. Disruption of the MoMSN2 gene resulted in defects in aerial hyphal growth, conidial production, and infection of host plants. Quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of several genes involved in conidiophore formation was reduced in ΔMomsn2, suggesting that MoMsn2 might function as a transcriptional regulator of these genes. Subsequently, MoCos1 was identified as one of the MoMsn2 targets through yeast one-hybrid analysis in which MoMsn2 binds to the AGGGG and CCCCT motif of the MoCOS1 promoter region. Phenotypic characterization showed that MoMsn2 was required for appressorium formation and penetration and pathogenicity. Although the ΔMomsn2 mutant was tolerant to the cell-wall stressor Calcofluor white, it was sensitive to common osmotic stressors. Further analysis suggests that MoMsn2 is involved in the regulation of the cell-wall biosynthesis pathway. Finally, transcriptome data revealed that MoMsn2 modulates numerous genes participating in conidiation, infection, cell-wall integrity, and stress response. Collectively, our results led to a model in which MoMsn2 mediates a series of downstream genes that control aerial hyphal growth, conidiogenesis, appressorium formation, cell-wall biosynthesis, and infection and that also offer potential targets for the development of new disease management strategies. |
first_indexed | 2024-04-12T18:59:28Z |
format | Article |
id | doaj.art-2e3c019df0144468a8460efb987ee071 |
institution | Directory Open Access Journal |
issn | 0894-0282 1943-7706 |
language | English |
last_indexed | 2024-04-12T18:59:28Z |
publishDate | 2014-05-01 |
publisher | The American Phytopathological Society |
record_format | Article |
series | Molecular Plant-Microbe Interactions |
spelling | doaj.art-2e3c019df0144468a8460efb987ee0712022-12-22T03:20:12ZengThe American Phytopathological SocietyMolecular Plant-Microbe Interactions0894-02821943-77062014-05-0127544646010.1094/MPMI-09-13-0271-RPleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzaeHaifeng ZhangQian ZhaoXianxian GuoMin GuoZhongqiang QiWei TangYanhan DongWenwu YeXiaobo ZhengPing WangZhengguang ZhangThe mitogen-activated protein kinase MoOsm1–mediated osmoregulation pathway plays crucial roles in stress responses, asexual and sexual development, and pathogenicity in Magnaporthe oryzae. Utilizing an affinity purification approach, we identified the putative transcriptional activator MoMsn2 as a protein that interacts with MoOsm1 in vivo. Disruption of the MoMSN2 gene resulted in defects in aerial hyphal growth, conidial production, and infection of host plants. Quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of several genes involved in conidiophore formation was reduced in ΔMomsn2, suggesting that MoMsn2 might function as a transcriptional regulator of these genes. Subsequently, MoCos1 was identified as one of the MoMsn2 targets through yeast one-hybrid analysis in which MoMsn2 binds to the AGGGG and CCCCT motif of the MoCOS1 promoter region. Phenotypic characterization showed that MoMsn2 was required for appressorium formation and penetration and pathogenicity. Although the ΔMomsn2 mutant was tolerant to the cell-wall stressor Calcofluor white, it was sensitive to common osmotic stressors. Further analysis suggests that MoMsn2 is involved in the regulation of the cell-wall biosynthesis pathway. Finally, transcriptome data revealed that MoMsn2 modulates numerous genes participating in conidiation, infection, cell-wall integrity, and stress response. Collectively, our results led to a model in which MoMsn2 mediates a series of downstream genes that control aerial hyphal growth, conidiogenesis, appressorium formation, cell-wall biosynthesis, and infection and that also offer potential targets for the development of new disease management strategies.https://apsjournals.apsnet.org/doi/10.1094/MPMI-09-13-0271-R |
spellingShingle | Haifeng Zhang Qian Zhao Xianxian Guo Min Guo Zhongqiang Qi Wei Tang Yanhan Dong Wenwu Ye Xiaobo Zheng Ping Wang Zhengguang Zhang Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae Molecular Plant-Microbe Interactions |
title | Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae |
title_full | Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae |
title_fullStr | Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae |
title_full_unstemmed | Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae |
title_short | Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae |
title_sort | pleiotropic function of the putative zinc finger protein momsn2 in magnaporthe oryzae |
url | https://apsjournals.apsnet.org/doi/10.1094/MPMI-09-13-0271-R |
work_keys_str_mv | AT haifengzhang pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT qianzhao pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT xianxianguo pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT minguo pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT zhongqiangqi pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT weitang pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT yanhandong pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT wenwuye pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT xiaobozheng pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT pingwang pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae AT zhengguangzhang pleiotropicfunctionoftheputativezincfingerproteinmomsn2inmagnaportheoryzae |