Identification and Characterization of Cancer Stem-Like Cells in ALK-Positive Anaplastic Large Cell Lymphoma Using the SORE6 Reporter

Transcription factors Sox2 and Oct4 are essential in maintaining the pluripotency of embryonic stem cells and conferring stemness in cancer stem-like (CSL) cells. SORE6, an in-vitro reporter system, was designed to quantify the transcription activity of Sox2/Oct4 and identify CSL cells in non-hemato...

Full description

Bibliographic Details
Main Authors: Jing Li, Moinul Haque, Chuquan Shang, Bardes Hassan, Dongzhe Liu, Will Chen, Raymond Lai
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Current Issues in Molecular Biology
Subjects:
Online Access:https://www.mdpi.com/1467-3045/43/2/41
Description
Summary:Transcription factors Sox2 and Oct4 are essential in maintaining the pluripotency of embryonic stem cells and conferring stemness in cancer stem-like (CSL) cells. SORE6, an in-vitro reporter system, was designed to quantify the transcription activity of Sox2/Oct4 and identify CSL cells in non-hematologic cancers. Using SORE6, we identified and enriched CSL cells in ALK-positive anaplastic large cell lymphoma (ALK + ALCL). Two ALK + ALCL cell lines, SupM2 and UCONN-L2, contained approximately 20% of SORE6+ cells, which were purified based on their expression of green fluorescent protein. We then performed functional studies using single-cell clones derived from SORE6− and SORE6+ cells. Compared to SORE6− cells, SORE6+ cells were significantly more chemoresistant and clonogenic in colony-formation assays. Sox2/Oct4 are directly involved in conferring these CSL properties, since the shRNA knockdown of Sox2 in SORE6+ significantly lowered their chemoresistance, while enforced expression of Sox2/Oct4 in SORE6− cells produced opposite effects. Using Western blots, we found that the expression and subcellular localization of Sox2/Oct4 were similar between SORE6− and SORE6+ cells. However, in SORE6+ but not SORE6− cells, Sox2 and Oct4 abundantly bound to a probe containing the SORE6 consensus sequence. c-Myc, previously shown to regulate cancer stemness in ALK + ALCL, regulated the SORE6 activity. In conclusion, SORE6 is useful in identifying/enriching CSL cells in ALK + ALCL.
ISSN:1467-3037
1467-3045