Hybrid Convolutional Network Combining Multiscale 3D Depthwise Separable Convolution and CBAM Residual Dilated Convolution for Hyperspectral Image Classification
In recent years, convolutional neural networks (CNNs) have been increasingly leveraged for the classification of hyperspectral imagery, displaying notable advancements. To address the issues of insufficient spectral and spatial information extraction and high computational complexity in hyperspectra...
Main Authors: | Yicheng Hu, Shufang Tian, Jia Ge |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
MDPI AG
2023-10-01
|
סדרה: | Remote Sensing |
נושאים: | |
גישה מקוונת: | https://www.mdpi.com/2072-4292/15/19/4796 |
פריטים דומים
-
Hyperspectral Image Classification Network Based on 3D Octave Convolution and Multiscale Depthwise Separable Convolution
מאת: Qingqing Hong, et al.
יצא לאור: (2023-12-01) -
Classification of Petrographic Thin Section Images With Depthwise Separable Convolution and Dilated Convolution
מאת: Shaowei Pan, et al.
יצא לאור: (2025-01-01) -
An efficient and accurate deep learning method for tree species classification that integrates depthwise separable convolution and dilated convolution using hyperspectral data
מאת: Mengni Fu, et al.
יצא לאור: (2024-12-01) -
DCCaps-UNet: A U-Shaped Hyperspectral Semantic Segmentation Model Based on the Depthwise Separable and Conditional Convolution Capsule Network
מאת: Siqi Wei, et al.
יצא לאור: (2023-06-01) -
Attention Mechanism and Depthwise Separable Convolution Aided 3DCNN for Hyperspectral Remote Sensing Image Classification
מאת: Wenmei Li, et al.
יצא לאור: (2022-05-01)