Maximum Edge-Colorings Of Graphs
An r-maximum k-edge-coloring of G is a k-edge-coloring of G having a property that for every vertex v of degree dG(v) = d, d ≥ r, the maximum color, that is present at vertex v, occurs at v exactly r times. The r-maximum index χr′(G)$\chi _r^\prime (G)$ is defined to be the minimum number k of col...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2016-02-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.1843 |
_version_ | 1797718002604441600 |
---|---|
author | Jendrol’ Stanislav Vrbjarová Michaela |
author_facet | Jendrol’ Stanislav Vrbjarová Michaela |
author_sort | Jendrol’ Stanislav |
collection | DOAJ |
description | An r-maximum k-edge-coloring of G is a k-edge-coloring of G having a property that for every vertex v of degree dG(v) = d, d ≥ r, the maximum color, that is present at vertex v, occurs at v exactly r times. The r-maximum index
χr′(G)$\chi _r^\prime (G)$
is defined to be the minimum number k of colors needed for an r-maximum k-edge-coloring of graph G. In this paper we show that
χr′(G)≤3$\chi _r^\prime (G) \le 3$
for any nontrivial connected graph G and r = 1 or 2. The bound 3 is tight. All graphs G with
χ1′(G)=i$\chi _1^\prime (G) = i$
, i = 1, 2, 3 are characterized. The precise value of the r-maximum index, r ≥ 1, is determined for trees and complete graphs. |
first_indexed | 2024-03-12T08:44:39Z |
format | Article |
id | doaj.art-2e5305cd9fd5496191862e94d946ad4d |
institution | Directory Open Access Journal |
issn | 2083-5892 |
language | English |
last_indexed | 2024-03-12T08:44:39Z |
publishDate | 2016-02-01 |
publisher | University of Zielona Góra |
record_format | Article |
series | Discussiones Mathematicae Graph Theory |
spelling | doaj.art-2e5305cd9fd5496191862e94d946ad4d2023-09-02T16:29:34ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922016-02-0136111712510.7151/dmgt.1843dmgt.1843Maximum Edge-Colorings Of GraphsJendrol’ Stanislav0Vrbjarová Michaela1Institute of Mathematics, P.J.Šafárik University, Jesenná 5 040 01 Košice SlovakiaInstitute of Mathematics, P.J.Šafárik University, Jesenná 5 040 01 Košice SlovakiaAn r-maximum k-edge-coloring of G is a k-edge-coloring of G having a property that for every vertex v of degree dG(v) = d, d ≥ r, the maximum color, that is present at vertex v, occurs at v exactly r times. The r-maximum index χr′(G)$\chi _r^\prime (G)$ is defined to be the minimum number k of colors needed for an r-maximum k-edge-coloring of graph G. In this paper we show that χr′(G)≤3$\chi _r^\prime (G) \le 3$ for any nontrivial connected graph G and r = 1 or 2. The bound 3 is tight. All graphs G with χ1′(G)=i$\chi _1^\prime (G) = i$ , i = 1, 2, 3 are characterized. The precise value of the r-maximum index, r ≥ 1, is determined for trees and complete graphs.https://doi.org/10.7151/dmgt.1843edge-coloringr-maximum k-edge-coloringunique-maximum edge-coloringweak-odd edge-coloringweak-even edge-coloring05c1505c35 |
spellingShingle | Jendrol’ Stanislav Vrbjarová Michaela Maximum Edge-Colorings Of Graphs Discussiones Mathematicae Graph Theory edge-coloring r-maximum k-edge-coloring unique-maximum edge-coloring weak-odd edge-coloring weak-even edge-coloring 05c15 05c35 |
title | Maximum Edge-Colorings Of Graphs |
title_full | Maximum Edge-Colorings Of Graphs |
title_fullStr | Maximum Edge-Colorings Of Graphs |
title_full_unstemmed | Maximum Edge-Colorings Of Graphs |
title_short | Maximum Edge-Colorings Of Graphs |
title_sort | maximum edge colorings of graphs |
topic | edge-coloring r-maximum k-edge-coloring unique-maximum edge-coloring weak-odd edge-coloring weak-even edge-coloring 05c15 05c35 |
url | https://doi.org/10.7151/dmgt.1843 |
work_keys_str_mv | AT jendrolstanislav maximumedgecoloringsofgraphs AT vrbjarovamichaela maximumedgecoloringsofgraphs |