Dual blockade of CD47 and CD24 signaling using a novel bispecific antibody fusion protein enhances macrophage immunotherapy

CD47 and its receptor signal regulatory protein α (SIRPα) act as a dominant antiphagocytic, “don’t eat me” signal. Recent studies reveal CD24 as a novel target for cancer immunotherapy by macrophages in ovarian cancer and breast cancer. However, whether simultaneous blockade of CD47 and CD24 by a bi...

Full description

Bibliographic Details
Main Authors: Yun Yang, He Wu, Yan Yang, Yan Kang, Runjia He, Bei Zhou, Huaizu Guo, Jing Zhang, Jianqin Li, Chunpo Ge, Tianyun Wang
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Molecular Therapy: Oncolytics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2372770523000967
Description
Summary:CD47 and its receptor signal regulatory protein α (SIRPα) act as a dominant antiphagocytic, “don’t eat me” signal. Recent studies reveal CD24 as a novel target for cancer immunotherapy by macrophages in ovarian cancer and breast cancer. However, whether simultaneous blockade of CD47 and CD24 by a bispecific antibody may result in a potential synergy is still unclear. In the present study, we for the first time designed and developed a bispecific antibody fusion protein, PPAB001 for cotargeting CD47 and CD24. Data demonstrate that simultaneous blockade of CD47/SIRPα and CD24/Siglec-10 signaling by PPAB001 potently promoted macrophage phagocytosis of tumor cells. Compared to single CD47 or CD24 targeting agents, PPAB001 was more effective in inhibiting tumor growth in both mouse 4T-1 syngeneic and human SK-OV-3 xenogeneic tumor models. Mechanistically, we found that PPAB001 therapy markedly increased the proportion of tumor-infiltrating macrophages and upregulated interleukin-6 and tumor necrosis factor-α levels that were representative macrophage inflammatory cytokines. Notably, an increased ratio of M1/M2 in tumor-infiltrating macrophages in the mice treated with PPAB001 suggested that the dual blockade may promote the transition of macrophages from M2 to M1. Taken together, our data supported the development of PPAB001 as a novel immunotherapeutic in the treatment of CD47 and CD24 double-positive cancers.
ISSN:2372-7705