An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative Stress
Abstract Insufficient endogenous neurotrophin supply contributes to neurodegeneration. Meanwhile, neuronal injuries are also attributed to oxidative stress upon toxin exposure. Thus, reconstruction neurite extension and antioxidative stress are the potential strategies for ameliorating neuronal inju...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-10-01
|
Series: | Advanced Science |
Subjects: | |
Online Access: | https://doi.org/10.1002/advs.201700089 |
_version_ | 1797754215705083904 |
---|---|
author | Jing Liu Linlin Wang Yuguo Du Sijin Liu |
author_facet | Jing Liu Linlin Wang Yuguo Du Sijin Liu |
author_sort | Jing Liu |
collection | DOAJ |
description | Abstract Insufficient endogenous neurotrophin supply contributes to neurodegeneration. Meanwhile, neuronal injuries are also attributed to oxidative stress upon toxin exposure. Thus, reconstruction neurite extension and antioxidative stress are the potential strategies for ameliorating neuronal injuries. However, there is no well‐defined therapeutic developed in this regard. In search of such therapeutics, Petrosiol E is identified here as a potent inducer to guide the differentiation of neuronal progenitor cells. Petrosiol E also considerably promotes embryonic stem cell differentiation into neural ectoderm features. Moreover, Petrosiol E reveals an antioxidant function to protect cells from oxidative stress induced by arsenic. Moreover, the molecular mechanism underlying Petrosiol E‐induced neuronal differentiation is uncovered: (a) enhancement of NF‐E2‐related factor 2 (Nrf 2) activity in driving neuronal differentiation; (b) diminishment of oxidative stress. Petrosiol E activates the mitogen‐activated protein kinase and serine/threonine kinase signaling to enhance the activity of Nrf 2. As a result of enhanced Nrf 2 activity, neuronal differentiation is accelerated, and the cellular antioxidation responses are also enforced, even under arsenic‐induced neurotoxicity. Together, the combined results unveil a desirable role of Petrosiol E in driving neuronal differentiation and in combating oxidative stress. This study would open an avenue to develop new therapeutics based on Petrosiol compounds to treat neurodegenerative diseases. |
first_indexed | 2024-03-12T17:29:30Z |
format | Article |
id | doaj.art-2e72933e38a348e3b32e75f5f24e9762 |
institution | Directory Open Access Journal |
issn | 2198-3844 |
language | English |
last_indexed | 2024-03-12T17:29:30Z |
publishDate | 2017-10-01 |
publisher | Wiley |
record_format | Article |
series | Advanced Science |
spelling | doaj.art-2e72933e38a348e3b32e75f5f24e97622023-08-05T03:41:05ZengWileyAdvanced Science2198-38442017-10-01410n/an/a10.1002/advs.201700089An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative StressJing Liu0Linlin Wang1Yuguo Du2Sijin Liu3State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing 100085 P. R. ChinaState Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing 100085 P. R. ChinaState Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing 100085 P. R. ChinaState Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing 100085 P. R. ChinaAbstract Insufficient endogenous neurotrophin supply contributes to neurodegeneration. Meanwhile, neuronal injuries are also attributed to oxidative stress upon toxin exposure. Thus, reconstruction neurite extension and antioxidative stress are the potential strategies for ameliorating neuronal injuries. However, there is no well‐defined therapeutic developed in this regard. In search of such therapeutics, Petrosiol E is identified here as a potent inducer to guide the differentiation of neuronal progenitor cells. Petrosiol E also considerably promotes embryonic stem cell differentiation into neural ectoderm features. Moreover, Petrosiol E reveals an antioxidant function to protect cells from oxidative stress induced by arsenic. Moreover, the molecular mechanism underlying Petrosiol E‐induced neuronal differentiation is uncovered: (a) enhancement of NF‐E2‐related factor 2 (Nrf 2) activity in driving neuronal differentiation; (b) diminishment of oxidative stress. Petrosiol E activates the mitogen‐activated protein kinase and serine/threonine kinase signaling to enhance the activity of Nrf 2. As a result of enhanced Nrf 2 activity, neuronal differentiation is accelerated, and the cellular antioxidation responses are also enforced, even under arsenic‐induced neurotoxicity. Together, the combined results unveil a desirable role of Petrosiol E in driving neuronal differentiation and in combating oxidative stress. This study would open an avenue to develop new therapeutics based on Petrosiol compounds to treat neurodegenerative diseases.https://doi.org/10.1002/advs.201700089AktarsenicErk1/2neurite outgrowthNrf2Petrosiol E |
spellingShingle | Jing Liu Linlin Wang Yuguo Du Sijin Liu An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative Stress Advanced Science Akt arsenic Erk1/2 neurite outgrowth Nrf2 Petrosiol E |
title | An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative Stress |
title_full | An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative Stress |
title_fullStr | An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative Stress |
title_full_unstemmed | An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative Stress |
title_short | An Important Function of Petrosiol E in Inducing the Differentiation of Neuronal Progenitors and in Protecting Them against Oxidative Stress |
title_sort | important function of petrosiol e in inducing the differentiation of neuronal progenitors and in protecting them against oxidative stress |
topic | Akt arsenic Erk1/2 neurite outgrowth Nrf2 Petrosiol E |
url | https://doi.org/10.1002/advs.201700089 |
work_keys_str_mv | AT jingliu animportantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress AT linlinwang animportantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress AT yuguodu animportantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress AT sijinliu animportantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress AT jingliu importantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress AT linlinwang importantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress AT yuguodu importantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress AT sijinliu importantfunctionofpetrosioleininducingthedifferentiationofneuronalprogenitorsandinprotectingthemagainstoxidativestress |