Shape evolution of Ne isotopes and Ne hypernuclei: The interplay of pairing and tensor interactions

We study tensor and pairing effects on the quadruple deformation of neon isotopes based on a deformed Skyrme-Hartree-Fock model with BCS approximation for the pairing channel. We extend the Skyrme-Hartree-Fock formalism for the description of hypernuclei adopting the recently-proposed ESC08b hyperon...

Full description

Bibliographic Details
Main Authors: Li A., Hiyama E., Zhou X.-R., Sagawa H.
Format: Article
Language:English
Published: EDP Sciences 2014-03-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20146609010
Description
Summary:We study tensor and pairing effects on the quadruple deformation of neon isotopes based on a deformed Skyrme-Hartree-Fock model with BCS approximation for the pairing channel. We extend the Skyrme-Hartree-Fock formalism for the description of hypernuclei adopting the recently-proposed ESC08b hyperon-nucleon interaction. It is found that the interplay of pairing and tensor interactions is crucial to derive the deformations in several neon isotopes. Especially, the shapes of 26,30Ne are studied in details in comparisons with experimentally observed shapes. Furthermore the deformations of the hypernuclei are compared with the corresponding neon isotopic cores in the presence of tensor force. We find the same shapes with somewhat smaller deformations for single Λ-hypernuclei compared with their core deformations.
ISSN:2100-014X