Qubit Regularization and Qubit Embedding Algebras

Qubit regularization is a procedure to regularize the infinite dimensional local Hilbert space of bosonic fields to a finite dimensional one, which is a crucial step when trying to simulate lattice quantum field theories on a quantum computer. When the qubit-regularized lattice quantum fields preser...

Full description

Bibliographic Details
Main Authors: Hanqing Liu, Shailesh Chandrasekharan
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/2/305
_version_ 1797476397139099648
author Hanqing Liu
Shailesh Chandrasekharan
author_facet Hanqing Liu
Shailesh Chandrasekharan
author_sort Hanqing Liu
collection DOAJ
description Qubit regularization is a procedure to regularize the infinite dimensional local Hilbert space of bosonic fields to a finite dimensional one, which is a crucial step when trying to simulate lattice quantum field theories on a quantum computer. When the qubit-regularized lattice quantum fields preserve important symmetries of the original theory, qubit regularization naturally enforces certain algebraic structures on these quantum fields. We introduce the concept of qubit embedding algebras (QEAs) to characterize this algebraic structure associated with a qubit regularization scheme. We show a systematic procedure to derive QEAs for the O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> lattice spin models and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">SU</mo><mo>(</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> lattice gauge theories. While some of the QEAs we find were discovered earlier in the context of the D-theory approach, our method shows that QEAs are far richer. A more complete understanding of the QEAs could be helpful in recovering the fixed points of the desired quantum field theories.
first_indexed 2024-03-09T20:57:12Z
format Article
id doaj.art-2e880b4758d747449bfe25606728b78e
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T20:57:12Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-2e880b4758d747449bfe25606728b78e2023-11-23T22:16:28ZengMDPI AGSymmetry2073-89942022-02-0114230510.3390/sym14020305Qubit Regularization and Qubit Embedding AlgebrasHanqing Liu0Shailesh Chandrasekharan1Department of Physics, Duke University, Durham, NC 27708, USADepartment of Physics, Duke University, Durham, NC 27708, USAQubit regularization is a procedure to regularize the infinite dimensional local Hilbert space of bosonic fields to a finite dimensional one, which is a crucial step when trying to simulate lattice quantum field theories on a quantum computer. When the qubit-regularized lattice quantum fields preserve important symmetries of the original theory, qubit regularization naturally enforces certain algebraic structures on these quantum fields. We introduce the concept of qubit embedding algebras (QEAs) to characterize this algebraic structure associated with a qubit regularization scheme. We show a systematic procedure to derive QEAs for the O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> lattice spin models and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">SU</mo><mo>(</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> lattice gauge theories. While some of the QEAs we find were discovered earlier in the context of the D-theory approach, our method shows that QEAs are far richer. A more complete understanding of the QEAs could be helpful in recovering the fixed points of the desired quantum field theories.https://www.mdpi.com/2073-8994/14/2/305lattice spin modelslattice gauge theoriesquantum computation/simulationquantum criticality
spellingShingle Hanqing Liu
Shailesh Chandrasekharan
Qubit Regularization and Qubit Embedding Algebras
Symmetry
lattice spin models
lattice gauge theories
quantum computation/simulation
quantum criticality
title Qubit Regularization and Qubit Embedding Algebras
title_full Qubit Regularization and Qubit Embedding Algebras
title_fullStr Qubit Regularization and Qubit Embedding Algebras
title_full_unstemmed Qubit Regularization and Qubit Embedding Algebras
title_short Qubit Regularization and Qubit Embedding Algebras
title_sort qubit regularization and qubit embedding algebras
topic lattice spin models
lattice gauge theories
quantum computation/simulation
quantum criticality
url https://www.mdpi.com/2073-8994/14/2/305
work_keys_str_mv AT hanqingliu qubitregularizationandqubitembeddingalgebras
AT shaileshchandrasekharan qubitregularizationandqubitembeddingalgebras