Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)

The quality of water in rivers is declining worldwide due to anthropogenic activities. This phenomenon may be exacerbated by climate change and population growth. We hypothesised that both physical and chemical parameters of water, which reflect the differences in the underlying geology and anthropo...

Full description

Bibliographic Details
Main Authors: Halabowski Dariusz, Lewin Iga
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:Knowledge and Management of Aquatic Ecosystems
Subjects:
Online Access:https://www.kmae-journal.org/articles/kmae/full_html/2020/01/kmae200040/kmae200040.html
_version_ 1818526366970150912
author Halabowski Dariusz
Lewin Iga
author_facet Halabowski Dariusz
Lewin Iga
author_sort Halabowski Dariusz
collection DOAJ
description The quality of water in rivers is declining worldwide due to anthropogenic activities. This phenomenon may be exacerbated by climate change and population growth. We hypothesised that both physical and chemical parameters of water, which reflect the differences in the underlying geology and anthropogenic transformations, are the most important characteristics to explain the distribution of macrophytes in rivers. In the present study, we analysed the effect of anthropogenic transformation on the structure of macrophytes in eight rivers within the river basins of the Vistula and Oder Rivers (Southern Poland). A canonical correspondence analysis showed that conductivity, altitude, natural features of rivers and adjacent land use, which are indicated by the values of the Hydromorphological Diversity Index (WRH), and medium sand were the most important factors that affected the distribution of macrophytes. The eurytopic species, including invasive alien species, were negatively correlated with the WRH index and positively correlated with high conductivity. An increase in the conductivity led to a loss of vegetation diversity and caused the replacement of freshwater species with brackish or salt-resistant species. Salinity of 2.96–5.16 PSU decreased the number of macrophyte taxa by over 30% in the rivers as compared to salinity of 0.45–0.64 PSU. Because very few studies have investigated the effect of salinity on macrophytes, further research is needed to explain this phenomenon. We therefore suggest extensive use of hydromorphological indices in studies on the distribution of macrophytes in rivers.
first_indexed 2024-12-11T06:21:59Z
format Article
id doaj.art-2e88a91a052e4042bf317bbef90584dd
institution Directory Open Access Journal
issn 1961-9502
language English
last_indexed 2024-12-11T06:21:59Z
publishDate 2020-01-01
publisher EDP Sciences
record_format Article
series Knowledge and Management of Aquatic Ecosystems
spelling doaj.art-2e88a91a052e4042bf317bbef90584dd2022-12-22T01:17:48ZengEDP SciencesKnowledge and Management of Aquatic Ecosystems1961-95022020-01-0104213510.1051/kmae/2020026kmae200040Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)Halabowski Dariuszhttps://orcid.org/0000-0001-5841-559XLewin Igahttps://orcid.org/0000-0001-5204-2120The quality of water in rivers is declining worldwide due to anthropogenic activities. This phenomenon may be exacerbated by climate change and population growth. We hypothesised that both physical and chemical parameters of water, which reflect the differences in the underlying geology and anthropogenic transformations, are the most important characteristics to explain the distribution of macrophytes in rivers. In the present study, we analysed the effect of anthropogenic transformation on the structure of macrophytes in eight rivers within the river basins of the Vistula and Oder Rivers (Southern Poland). A canonical correspondence analysis showed that conductivity, altitude, natural features of rivers and adjacent land use, which are indicated by the values of the Hydromorphological Diversity Index (WRH), and medium sand were the most important factors that affected the distribution of macrophytes. The eurytopic species, including invasive alien species, were negatively correlated with the WRH index and positively correlated with high conductivity. An increase in the conductivity led to a loss of vegetation diversity and caused the replacement of freshwater species with brackish or salt-resistant species. Salinity of 2.96–5.16 PSU decreased the number of macrophyte taxa by over 30% in the rivers as compared to salinity of 0.45–0.64 PSU. Because very few studies have investigated the effect of salinity on macrophytes, further research is needed to explain this phenomenon. We therefore suggest extensive use of hydromorphological indices in studies on the distribution of macrophytes in rivers.https://www.kmae-journal.org/articles/kmae/full_html/2020/01/kmae200040/kmae200040.htmlhuman impactmacrophytessalinisationhydromorphologypollution
spellingShingle Halabowski Dariusz
Lewin Iga
Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)
Knowledge and Management of Aquatic Ecosystems
human impact
macrophytes
salinisation
hydromorphology
pollution
title Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)
title_full Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)
title_fullStr Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)
title_full_unstemmed Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)
title_short Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland)
title_sort impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions southern poland
topic human impact
macrophytes
salinisation
hydromorphology
pollution
url https://www.kmae-journal.org/articles/kmae/full_html/2020/01/kmae200040/kmae200040.html
work_keys_str_mv AT halabowskidariusz impactofanthropogenictransformationsonthevegetationofselectedabiotictypesofriversintwoecoregionssouthernpoland
AT lewiniga impactofanthropogenictransformationsonthevegetationofselectedabiotictypesofriversintwoecoregionssouthernpoland