Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator

It is known that discrete analogs of differential operators play an important role in constructing optimal quadrature, cubature, and difference formulas. Using discrete analogs of differential operators, optimal interpolation, quadrature, and difference formulas exact for algebraic polynomials, trig...

Full description

Bibliographic Details
Main Authors: Kholmat Shadimetov, Aziz Boltaev, Roman Parovik
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/14/3114
_version_ 1797588409069338624
author Kholmat Shadimetov
Aziz Boltaev
Roman Parovik
author_facet Kholmat Shadimetov
Aziz Boltaev
Roman Parovik
author_sort Kholmat Shadimetov
collection DOAJ
description It is known that discrete analogs of differential operators play an important role in constructing optimal quadrature, cubature, and difference formulas. Using discrete analogs of differential operators, optimal interpolation, quadrature, and difference formulas exact for algebraic polynomials, trigonometric and exponential functions can be constructed. In this paper, we construct a discrete analogue <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>h</mi><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the differential operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><msup><mi>d</mi><mrow><mn>2</mn><mi>m</mi></mrow></msup><mrow><mi>d</mi><msup><mi>x</mi><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mn>2</mn><mfrac><msup><mi>d</mi><mi>m</mi></msup><mrow><mi>d</mi><msup><mi>x</mi><mi>m</mi></msup></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> in the Hilbert space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>W</mi><mn>2</mn><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula>. We develop an algorithm for constructing optimal quadrature formulas exact on exponential-trigonometric functions using a discrete operator. Based on this algorithm, in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, we give an optimal quadrature formula exact for trigonometric functions. Finally, we present the rate of convergence of the optimal quadrature formula in the Hilbert space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>W</mi><mn>2</mn><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula> for the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-11T00:51:33Z
format Article
id doaj.art-2e9902bb50314018b61b1b402c61773f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T00:51:33Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2e9902bb50314018b61b1b402c61773f2023-11-18T20:20:45ZengMDPI AGMathematics2227-73902023-07-011114311410.3390/math11143114Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential OperatorKholmat Shadimetov0Aziz Boltaev1Roman Parovik2Department of Informatics and Computer Graphics, Tashkent State Transport University, 1 Odilkhodjayev Str., Tashkent 100167, UzbekistanDepartment of Informatics and Computer Graphics, Tashkent State Transport University, 1 Odilkhodjayev Str., Tashkent 100167, UzbekistanInternational Integrative Research Laboratory of Extreme Phenomena of Kamchatka, Vitus Bering Kamchatka State University, 4 Pogranichnaya St., Petropavlovsk-Kamchatskiy 683032, RussiaIt is known that discrete analogs of differential operators play an important role in constructing optimal quadrature, cubature, and difference formulas. Using discrete analogs of differential operators, optimal interpolation, quadrature, and difference formulas exact for algebraic polynomials, trigonometric and exponential functions can be constructed. In this paper, we construct a discrete analogue <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>h</mi><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the differential operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><msup><mi>d</mi><mrow><mn>2</mn><mi>m</mi></mrow></msup><mrow><mi>d</mi><msup><mi>x</mi><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></mfrac><mo>+</mo><mn>2</mn><mfrac><msup><mi>d</mi><mi>m</mi></msup><mrow><mi>d</mi><msup><mi>x</mi><mi>m</mi></msup></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> in the Hilbert space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>W</mi><mn>2</mn><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula>. We develop an algorithm for constructing optimal quadrature formulas exact on exponential-trigonometric functions using a discrete operator. Based on this algorithm, in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, we give an optimal quadrature formula exact for trigonometric functions. Finally, we present the rate of convergence of the optimal quadrature formula in the Hilbert space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>W</mi><mn>2</mn><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula> for the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/11/14/3114differential operatordiscrete analogueHilbert spacediscrete argument functionsoptimal quadrature formula
spellingShingle Kholmat Shadimetov
Aziz Boltaev
Roman Parovik
Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator
Mathematics
differential operator
discrete analogue
Hilbert space
discrete argument functions
optimal quadrature formula
title Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator
title_full Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator
title_fullStr Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator
title_full_unstemmed Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator
title_short Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator
title_sort optimization of the approximate integration formula using the discrete analogue of a high order differential operator
topic differential operator
discrete analogue
Hilbert space
discrete argument functions
optimal quadrature formula
url https://www.mdpi.com/2227-7390/11/14/3114
work_keys_str_mv AT kholmatshadimetov optimizationoftheapproximateintegrationformulausingthediscreteanalogueofahighorderdifferentialoperator
AT azizboltaev optimizationoftheapproximateintegrationformulausingthediscreteanalogueofahighorderdifferentialoperator
AT romanparovik optimizationoftheapproximateintegrationformulausingthediscreteanalogueofahighorderdifferentialoperator