Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India

Abstract The quantitative analysis of drainage system is an important aspect of characterization of watersheds. Using watershed as a basin unit in morphometric analysis is the most logical choice because all hydrological and geomorphic processes occur within the watershed. The Budigere Amanikere wat...

Full description

Bibliographic Details
Main Authors: Ramesh L. Dikpal, T. J. Renuka Prasad, K. Satish
Format: Article
Language:English
Published: SpringerOpen 2017-07-01
Series:Applied Water Science
Subjects:
Online Access:http://link.springer.com/article/10.1007/s13201-017-0585-6
_version_ 1818847812419321856
author Ramesh L. Dikpal
T. J. Renuka Prasad
K. Satish
author_facet Ramesh L. Dikpal
T. J. Renuka Prasad
K. Satish
author_sort Ramesh L. Dikpal
collection DOAJ
description Abstract The quantitative analysis of drainage system is an important aspect of characterization of watersheds. Using watershed as a basin unit in morphometric analysis is the most logical choice because all hydrological and geomorphic processes occur within the watershed. The Budigere Amanikere watershed a tributary of Dakshina Pinakini River has been selected for case illustration. Geoinformatics module consisting of ArcGIS 10.3v and Cartosat-1 Digital Elevation Model (DEM) version 1 of resolution 1 arc Sec (~32 m) data obtained from Bhuvan is effectively used. Sheet and gully erosion are identified in parts of the study area. Slope in the watershed indicating moderate to least runoff and negligible soil loss condition. Third and fourth-order sub-watershed analysis is carried out. Mean bifurcation ratio (R b) 3.6 specify there is no dominant influence of geology and structures, low drainage density (D d) 1.12 and low stream frequency (F s) 1.17 implies highly infiltration subsoil material and low runoff, infiltration number (I f)1.3 implies higher infiltration capacity, coarse drainage texture (T) 3.40 shows high permeable subsoil, length of overland flow (L g) 0.45 indicates under very less structural disturbances, less runoff conditions, constant of channel maintenance (C) 0.9 indicates higher permeability of subsoil, elongation ratio (R e) 0.58, circularity ratio (R c) 0.75 and form factor (R f) 0.26 signifies sub-circular to more elongated basin with high infiltration with low runoff. It was observed from the hypsometric curves and hypsometric integral values of the watershed along with their sub basins that the drainage system is attaining a mature stage of geomorphic development. Additionally, Hypsometric curve and hypsometric integral value proves that the infiltration capacity is high as well as runoff is low in the watershed. Thus, these mormometric analyses can be used as an estimator of erosion status of watersheds leading to prioritization for taking up soil and water conservation measures.
first_indexed 2024-12-19T06:07:24Z
format Article
id doaj.art-2ea1d2ca6eb0411eab6d27e0ae4ed245
institution Directory Open Access Journal
issn 2190-5487
2190-5495
language English
last_indexed 2024-12-19T06:07:24Z
publishDate 2017-07-01
publisher SpringerOpen
record_format Article
series Applied Water Science
spelling doaj.art-2ea1d2ca6eb0411eab6d27e0ae4ed2452022-12-21T20:33:06ZengSpringerOpenApplied Water Science2190-54872190-54952017-07-01784399441410.1007/s13201-017-0585-6Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, IndiaRamesh L. Dikpal0T. J. Renuka Prasad1K. Satish2Karnataka State Natural Disaster Monitoring CentreDepartment of Geology, Bangalore UniversityImpact College of Engineering and Applied SciencesAbstract The quantitative analysis of drainage system is an important aspect of characterization of watersheds. Using watershed as a basin unit in morphometric analysis is the most logical choice because all hydrological and geomorphic processes occur within the watershed. The Budigere Amanikere watershed a tributary of Dakshina Pinakini River has been selected for case illustration. Geoinformatics module consisting of ArcGIS 10.3v and Cartosat-1 Digital Elevation Model (DEM) version 1 of resolution 1 arc Sec (~32 m) data obtained from Bhuvan is effectively used. Sheet and gully erosion are identified in parts of the study area. Slope in the watershed indicating moderate to least runoff and negligible soil loss condition. Third and fourth-order sub-watershed analysis is carried out. Mean bifurcation ratio (R b) 3.6 specify there is no dominant influence of geology and structures, low drainage density (D d) 1.12 and low stream frequency (F s) 1.17 implies highly infiltration subsoil material and low runoff, infiltration number (I f)1.3 implies higher infiltration capacity, coarse drainage texture (T) 3.40 shows high permeable subsoil, length of overland flow (L g) 0.45 indicates under very less structural disturbances, less runoff conditions, constant of channel maintenance (C) 0.9 indicates higher permeability of subsoil, elongation ratio (R e) 0.58, circularity ratio (R c) 0.75 and form factor (R f) 0.26 signifies sub-circular to more elongated basin with high infiltration with low runoff. It was observed from the hypsometric curves and hypsometric integral values of the watershed along with their sub basins that the drainage system is attaining a mature stage of geomorphic development. Additionally, Hypsometric curve and hypsometric integral value proves that the infiltration capacity is high as well as runoff is low in the watershed. Thus, these mormometric analyses can be used as an estimator of erosion status of watersheds leading to prioritization for taking up soil and water conservation measures.http://link.springer.com/article/10.1007/s13201-017-0585-6MorphometryCartosat-1DEMBudigere Amanikere watershedDakshina PinakiniHypsometric curve and hypsometric integral and RS and GIS
spellingShingle Ramesh L. Dikpal
T. J. Renuka Prasad
K. Satish
Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India
Applied Water Science
Morphometry
Cartosat-1DEM
Budigere Amanikere watershed
Dakshina Pinakini
Hypsometric curve and hypsometric integral and RS and GIS
title Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India
title_full Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India
title_fullStr Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India
title_full_unstemmed Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India
title_short Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India
title_sort evaluation of morphometric parameters derived from cartosat 1 dem using remote sensing and gis techniques for budigere amanikere watershed dakshina pinakini basin karnataka india
topic Morphometry
Cartosat-1DEM
Budigere Amanikere watershed
Dakshina Pinakini
Hypsometric curve and hypsometric integral and RS and GIS
url http://link.springer.com/article/10.1007/s13201-017-0585-6
work_keys_str_mv AT rameshldikpal evaluationofmorphometricparametersderivedfromcartosat1demusingremotesensingandgistechniquesforbudigereamanikerewatersheddakshinapinakinibasinkarnatakaindia
AT tjrenukaprasad evaluationofmorphometricparametersderivedfromcartosat1demusingremotesensingandgistechniquesforbudigereamanikerewatersheddakshinapinakinibasinkarnatakaindia
AT ksatish evaluationofmorphometricparametersderivedfromcartosat1demusingremotesensingandgistechniquesforbudigereamanikerewatersheddakshinapinakinibasinkarnatakaindia