An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Mea...

Full description

Bibliographic Details
Main Authors: J. R. Olson, J. H. Crawford, W. Brune, J. Mao, X. Ren, A. Fried, B. Anderson, E. Apel, M. Beaver, D. Blake, G. Chen, J. Crounse, J. Dibb, G. Diskin, S. R. Hall, L. G. Huey, D. Knapp, D. Richter, D. Riemer, J. St. Clair, K. Ullmann, J. Walega, P. Weibring, A. Weinheimer, P. Wennberg, A. Wisthaler
Format: Article
Language:English
Published: Copernicus Publications 2012-08-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/6799/2012/acp-12-6799-2012.pdf
_version_ 1828425305328451584
author J. R. Olson
J. H. Crawford
W. Brune
J. Mao
X. Ren
A. Fried
B. Anderson
E. Apel
M. Beaver
D. Blake
G. Chen
J. Crounse
J. Dibb
G. Diskin
S. R. Hall
L. G. Huey
D. Knapp
D. Richter
D. Riemer
J. St. Clair
K. Ullmann
J. Walega
P. Weibring
A. Weinheimer
P. Wennberg
A. Wisthaler
author_facet J. R. Olson
J. H. Crawford
W. Brune
J. Mao
X. Ren
A. Fried
B. Anderson
E. Apel
M. Beaver
D. Blake
G. Chen
J. Crounse
J. Dibb
G. Diskin
S. R. Hall
L. G. Huey
D. Knapp
D. Richter
D. Riemer
J. St. Clair
K. Ullmann
J. Walega
P. Weibring
A. Weinheimer
P. Wennberg
A. Wisthaler
author_sort J. R. Olson
collection DOAJ
description Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO<sub>2</sub> from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO<sub>2</sub> using observed CH<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub> as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO<sub>2</sub> to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H<sub>2</sub>O<sub>2</sub> during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO<sub>x</sub> budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub>; however when the model is constrained with observed CH<sub>2</sub>O, H<sub>2</sub>O<sub>2</sub> predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH<sub>2</sub>O is uncertain. Free tropospheric observations of acetaldehyde (CH<sub>3</sub>CHO) are 2–3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH<sub>2</sub>O. The box model calculates gross O<sub>3</sub> formation during spring to maximize from 1–4 km at 0.8 ppbv d<sup>−1</sup>, in agreement with estimates from TOPSE, and a gross production of 2–4 ppbv d<sup>−1</sup> in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO<sub>2</sub> in place of model predictions decreases the gross production by 25–50%. Net O<sub>3</sub> production is near zero throughout the ARCTAS-A troposphere, and is 1–2 ppbv in the boundary layer and upper altitudes during ARCTAS-B.
first_indexed 2024-12-10T16:31:29Z
format Article
id doaj.art-2ea21a10d95342fb967e4a18ea3a4b5c
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-10T16:31:29Z
publishDate 2012-08-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-2ea21a10d95342fb967e4a18ea3a4b5c2022-12-22T01:41:32ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-08-0112156799682510.5194/acp-12-6799-2012An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSEJ. R. OlsonJ. H. CrawfordW. BruneJ. MaoX. RenA. FriedB. AndersonE. ApelM. BeaverD. BlakeG. ChenJ. CrounseJ. DibbG. DiskinS. R. HallL. G. HueyD. KnappD. RichterD. RiemerJ. St. ClairK. UllmannJ. WalegaP. WeibringA. WeinheimerP. WennbergA. WisthalerObservations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO<sub>2</sub> from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO<sub>2</sub> using observed CH<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub> as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO<sub>2</sub> to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H<sub>2</sub>O<sub>2</sub> during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO<sub>x</sub> budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub>; however when the model is constrained with observed CH<sub>2</sub>O, H<sub>2</sub>O<sub>2</sub> predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH<sub>2</sub>O is uncertain. Free tropospheric observations of acetaldehyde (CH<sub>3</sub>CHO) are 2–3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH<sub>2</sub>O. The box model calculates gross O<sub>3</sub> formation during spring to maximize from 1–4 km at 0.8 ppbv d<sup>−1</sup>, in agreement with estimates from TOPSE, and a gross production of 2–4 ppbv d<sup>−1</sup> in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO<sub>2</sub> in place of model predictions decreases the gross production by 25–50%. Net O<sub>3</sub> production is near zero throughout the ARCTAS-A troposphere, and is 1–2 ppbv in the boundary layer and upper altitudes during ARCTAS-B.http://www.atmos-chem-phys.net/12/6799/2012/acp-12-6799-2012.pdf
spellingShingle J. R. Olson
J. H. Crawford
W. Brune
J. Mao
X. Ren
A. Fried
B. Anderson
E. Apel
M. Beaver
D. Blake
G. Chen
J. Crounse
J. Dibb
G. Diskin
S. R. Hall
L. G. Huey
D. Knapp
D. Richter
D. Riemer
J. St. Clair
K. Ullmann
J. Walega
P. Weibring
A. Weinheimer
P. Wennberg
A. Wisthaler
An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE
Atmospheric Chemistry and Physics
title An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE
title_full An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE
title_fullStr An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE
title_full_unstemmed An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE
title_short An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE
title_sort analysis of fast photochemistry over high northern latitudes during spring and summer using in situ observations from arctas and topse
url http://www.atmos-chem-phys.net/12/6799/2012/acp-12-6799-2012.pdf
work_keys_str_mv AT jrolson ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jhcrawford ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT wbrune ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jmao ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT xren ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT afried ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT banderson ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT eapel ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT mbeaver ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT dblake ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT gchen ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jcrounse ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jdibb ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT gdiskin ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT srhall ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT lghuey ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT dknapp ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT drichter ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT driemer ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jstclair ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT kullmann ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jwalega ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT pweibring ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT aweinheimer ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT pwennberg ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT awisthaler ananalysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jrolson analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jhcrawford analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT wbrune analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jmao analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT xren analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT afried analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT banderson analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT eapel analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT mbeaver analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT dblake analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT gchen analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jcrounse analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jdibb analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT gdiskin analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT srhall analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT lghuey analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT dknapp analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT drichter analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT driemer analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jstclair analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT kullmann analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT jwalega analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT pweibring analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT aweinheimer analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT pwennberg analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse
AT awisthaler analysisoffastphotochemistryoverhighnorthernlatitudesduringspringandsummerusinginsituobservationsfromarctasandtopse