Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems

<p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/...

Full description

Bibliographic Details
Main Authors: Duan Peichao, Zhao Jing
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/528307
_version_ 1819118903817666560
author Duan Peichao
Zhao Jing
author_facet Duan Peichao
Zhao Jing
author_sort Duan Peichao
collection DOAJ
description <p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/></inline-formula> of a real Hilbert space <inline-formula> <graphic file="1687-1812-2010-528307-i3.gif"/></inline-formula>. Consider the problem of finding a common element of the set of fixed point of these mappings and the set of solutions of an equilibrium problem with the parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving this problem and prove these schemes converge strongly by hybrid methods.</p>
first_indexed 2024-12-22T05:56:17Z
format Article
id doaj.art-2eb9ca5c4e4241fa88b756df1711be23
institution Directory Open Access Journal
issn 1687-1820
1687-1812
language English
last_indexed 2024-12-22T05:56:17Z
publishDate 2010-01-01
publisher SpringerOpen
record_format Article
series Fixed Point Theory and Applications
spelling doaj.art-2eb9ca5c4e4241fa88b756df1711be232022-12-21T18:36:41ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122010-01-0120101528307Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium ProblemsDuan PeichaoZhao Jing<p/> <p>Let <inline-formula> <graphic file="1687-1812-2010-528307-i1.gif"/></inline-formula> be <it>N</it> strict pseudocontractions defined on a closed convex subset <inline-formula> <graphic file="1687-1812-2010-528307-i2.gif"/></inline-formula> of a real Hilbert space <inline-formula> <graphic file="1687-1812-2010-528307-i3.gif"/></inline-formula>. Consider the problem of finding a common element of the set of fixed point of these mappings and the set of solutions of an equilibrium problem with the parallel and cyclic algorithms. In this paper, we propose new iterative schemes for solving this problem and prove these schemes converge strongly by hybrid methods.</p>http://www.fixedpointtheoryandapplications.com/content/2010/528307
spellingShingle Duan Peichao
Zhao Jing
Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
Fixed Point Theory and Applications
title Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_full Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_fullStr Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_full_unstemmed Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_short Strong Convergence Theorems by Hybrid Methods for Strict Pseudocontractions and Equilibrium Problems
title_sort strong convergence theorems by hybrid methods for strict pseudocontractions and equilibrium problems
url http://www.fixedpointtheoryandapplications.com/content/2010/528307
work_keys_str_mv AT duanpeichao strongconvergencetheoremsbyhybridmethodsforstrictpseudocontractionsandequilibriumproblems
AT zhaojing strongconvergencetheoremsbyhybridmethodsforstrictpseudocontractionsandequilibriumproblems