Improving the formability of magnesium by cushion-ram-pulsation

The application of forming processes using lightweight magnesium alloys is known to be difficult with regard to minor formability caused by a small number of active slip systems, especially at low temperatures. However, a new approach for deep drawing at elevated temperatures considers flexible moti...

Full description

Bibliographic Details
Main Authors: Rautenstrauch Anja, Luft Johannes, Birnbaum Peter, Baumann Markus, Ullmann Madlen, Kräusel Verena, Landgrebe Dirk, Kawalla Rudolf, Prahl Ulrich
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Subjects:
Online Access:https://doi.org/10.1051/matecconf/201819012003
Description
Summary:The application of forming processes using lightweight magnesium alloys is known to be difficult with regard to minor formability caused by a small number of active slip systems, especially at low temperatures. However, a new approach for deep drawing at elevated temperatures considers flexible motion profiles of a servo-screw press. The so-called cushion-ram-pulsation (CRP) is a newly developed method of position-controlled motion. As a result, the process limitations for deep drawing are significantly extended. This study investigates the deep drawing process of AZ31 cups by variable motion profiles of cushion and ram, focusing on enhanced drawability. Therefore the initial AZ31 sheet was fabricated by twin-roll casting. Furthermore, the adjustment of the forming temperature for an improved forming process and optimized component properties are described. In addition, the results were evaluated in comparison to conventional deep drawing, and the superior technological potential will be outlined.
ISSN:2261-236X