Regularity of models associated with Markov jump processes

We consider a jump Markov process X=(Xt)t≥0X={\left({X}_{t})}_{t\ge 0}, with values in a state space (E,ℰ)\left(E,{\mathcal{ {\mathcal E} }}). We suppose that the corresponding infinitesimal generator πθ(x,dy),x∈E{\pi }_{\theta }\left(x,{\rm{d}}y),x\in E, hence the law Px,θ{{\mathbb{P}}}_{x,\theta }...

Full description

Bibliographic Details
Main Author: Jedidi Wissem
Format: Article
Language:English
Published: De Gruyter 2022-09-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2022-0482
_version_ 1797998356503461888
author Jedidi Wissem
author_facet Jedidi Wissem
author_sort Jedidi Wissem
collection DOAJ
description We consider a jump Markov process X=(Xt)t≥0X={\left({X}_{t})}_{t\ge 0}, with values in a state space (E,ℰ)\left(E,{\mathcal{ {\mathcal E} }}). We suppose that the corresponding infinitesimal generator πθ(x,dy),x∈E{\pi }_{\theta }\left(x,{\rm{d}}y),x\in E, hence the law Px,θ{{\mathbb{P}}}_{x,\theta } of XX, depends on a parameter θ∈Θ\theta \in \Theta . We prove that several models (filtered or not) associated with XX are linked, by their regularity according to a certain scheme. In particular, we show that the regularity of the model (πθ(x,dy))θ∈Θ{\left({\pi }_{\theta }\left(x,{\rm{d}}y))}_{\theta \in \Theta } is equivalent to the local regularity of (Px,θ)θ∈Θ{\left({{\mathbb{P}}}_{x,\theta })}_{\theta \in \Theta }.
first_indexed 2024-04-11T10:47:24Z
format Article
id doaj.art-2ec22ca7bb3c42b3aa2a5ef860ac75a9
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-04-11T10:47:24Z
publishDate 2022-09-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-2ec22ca7bb3c42b3aa2a5ef860ac75a92022-12-22T04:29:00ZengDe GruyterOpen Mathematics2391-54552022-09-0120191193010.1515/math-2022-0482Regularity of models associated with Markov jump processesJedidi Wissem0Department of Statistics & OR, King Saud University, College of Sciences, Riyadh 11451, Kingdom of Saudi ArabiaWe consider a jump Markov process X=(Xt)t≥0X={\left({X}_{t})}_{t\ge 0}, with values in a state space (E,ℰ)\left(E,{\mathcal{ {\mathcal E} }}). We suppose that the corresponding infinitesimal generator πθ(x,dy),x∈E{\pi }_{\theta }\left(x,{\rm{d}}y),x\in E, hence the law Px,θ{{\mathbb{P}}}_{x,\theta } of XX, depends on a parameter θ∈Θ\theta \in \Theta . We prove that several models (filtered or not) associated with XX are linked, by their regularity according to a certain scheme. In particular, we show that the regularity of the model (πθ(x,dy))θ∈Θ{\left({\pi }_{\theta }\left(x,{\rm{d}}y))}_{\theta \in \Theta } is equivalent to the local regularity of (Px,θ)θ∈Θ{\left({{\mathbb{P}}}_{x,\theta })}_{\theta \in \Theta }.https://doi.org/10.1515/math-2022-0482fisher information matrixhellinger integralsinfinitesimal generatorisomorphismjump markov processlikelihood processeslocal regularityrandomizationregularity of models65c2062m20
spellingShingle Jedidi Wissem
Regularity of models associated with Markov jump processes
Open Mathematics
fisher information matrix
hellinger integrals
infinitesimal generator
isomorphism
jump markov process
likelihood processes
local regularity
randomization
regularity of models
65c20
62m20
title Regularity of models associated with Markov jump processes
title_full Regularity of models associated with Markov jump processes
title_fullStr Regularity of models associated with Markov jump processes
title_full_unstemmed Regularity of models associated with Markov jump processes
title_short Regularity of models associated with Markov jump processes
title_sort regularity of models associated with markov jump processes
topic fisher information matrix
hellinger integrals
infinitesimal generator
isomorphism
jump markov process
likelihood processes
local regularity
randomization
regularity of models
65c20
62m20
url https://doi.org/10.1515/math-2022-0482
work_keys_str_mv AT jedidiwissem regularityofmodelsassociatedwithmarkovjumpprocesses