Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy Graphs

In this paper, the concept of a strong <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-Connected Total Perfect <inline-formula><mat...

Full description

Bibliographic Details
Main Authors: Krishnasamy Elavarasan, Tharmalingam Gunasekar, Lenka Cepova, Robert Cep
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/17/3178
_version_ 1797494304216711168
author Krishnasamy Elavarasan
Tharmalingam Gunasekar
Lenka Cepova
Robert Cep
author_facet Krishnasamy Elavarasan
Tharmalingam Gunasekar
Lenka Cepova
Robert Cep
author_sort Krishnasamy Elavarasan
collection DOAJ
description In this paper, the concept of a strong <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-Connected Total Perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set and a weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set in fuzzy graphs is introduced. In the current work, the triple-connected total perfect dominating set is modified to an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>k</mi><mi>D</mi></mrow></msub></mrow></semantics></math></inline-formula>(G) and number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> New definitions are compared with old ones. Strong and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set and number of fuzzy graphs are obtained. The results of those fuzzy sets are discussed with the definitions of spanning fuzzy graphs, strong and weak arcs, dominating sets, perfect dominating sets, generalization of triple-connected total perfect dominating sets of fuzzy graphs, complete, connected, bipartite, cut node, tree, bridge and some other new notions of fuzzy graphs which are analyzed with a strong and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>k</mi><mi>D</mi></mrow></msub></mrow></semantics></math></inline-formula>(G) set of fuzzy graphs. The order and size of the strong and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>k</mi><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="normal">G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> fuzzy set are studied. Additionally, a few related theorems and statements are analyzed.
first_indexed 2024-03-10T01:32:20Z
format Article
id doaj.art-2ed10603c59e4f1fb6d9620b26317b0e
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T01:32:20Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2ed10603c59e4f1fb6d9620b26317b0e2023-11-23T13:39:55ZengMDPI AGMathematics2227-73902022-09-011017317810.3390/math10173178Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy GraphsKrishnasamy Elavarasan0Tharmalingam Gunasekar1Lenka Cepova2Robert Cep3Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600 062, IndiaDepartment of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600 062, IndiaDepartment of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava, Czech RepublicDepartment of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava, Czech RepublicIn this paper, the concept of a strong <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-Connected Total Perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set and a weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set in fuzzy graphs is introduced. In the current work, the triple-connected total perfect dominating set is modified to an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>k</mi><mi>D</mi></mrow></msub></mrow></semantics></math></inline-formula>(G) and number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> New definitions are compared with old ones. Strong and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>n</mi></semantics></math></inline-formula>-connected total perfect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>-dominating set and number of fuzzy graphs are obtained. The results of those fuzzy sets are discussed with the definitions of spanning fuzzy graphs, strong and weak arcs, dominating sets, perfect dominating sets, generalization of triple-connected total perfect dominating sets of fuzzy graphs, complete, connected, bipartite, cut node, tree, bridge and some other new notions of fuzzy graphs which are analyzed with a strong and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>k</mi><mi>D</mi></mrow></msub></mrow></semantics></math></inline-formula>(G) set of fuzzy graphs. The order and size of the strong and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mrow><mi>c</mi><mi>t</mi><mi>p</mi><mi>k</mi><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="normal">G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> fuzzy set are studied. Additionally, a few related theorems and statements are analyzed.https://www.mdpi.com/2227-7390/10/17/3178total perfect <i>k</i>-dominating set<i>n</i>-connected total perfect <i>k</i>-dominating setstrong and weak <i>n</i>-connected total perfect <i>k</i>-dominating set and number
spellingShingle Krishnasamy Elavarasan
Tharmalingam Gunasekar
Lenka Cepova
Robert Cep
Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy Graphs
Mathematics
total perfect <i>k</i>-dominating set
<i>n</i>-connected total perfect <i>k</i>-dominating set
strong and weak <i>n</i>-connected total perfect <i>k</i>-dominating set and number
title Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy Graphs
title_full Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy Graphs
title_fullStr Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy Graphs
title_full_unstemmed Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy Graphs
title_short Study on a Strong and Weak <i>n</i>-Connected Total Perfect <i>k</i>-Dominating set in Fuzzy Graphs
title_sort study on a strong and weak i n i connected total perfect i k i dominating set in fuzzy graphs
topic total perfect <i>k</i>-dominating set
<i>n</i>-connected total perfect <i>k</i>-dominating set
strong and weak <i>n</i>-connected total perfect <i>k</i>-dominating set and number
url https://www.mdpi.com/2227-7390/10/17/3178
work_keys_str_mv AT krishnasamyelavarasan studyonastrongandweakiniconnectedtotalperfectikidominatingsetinfuzzygraphs
AT tharmalingamgunasekar studyonastrongandweakiniconnectedtotalperfectikidominatingsetinfuzzygraphs
AT lenkacepova studyonastrongandweakiniconnectedtotalperfectikidominatingsetinfuzzygraphs
AT robertcep studyonastrongandweakiniconnectedtotalperfectikidominatingsetinfuzzygraphs