A new exponential cluster validity index using Jaccard distance

Estimating the optimal number of clusters in an unsupervisedpartitioning of data sets has been a challenging area in recent years.These indices usually use two criteria called compactness andseparation to evaluate the efficiency of the performed clustering. Inthis paper a new separation measure for...

Full description

Bibliographic Details
Main Authors: Mohamad Hossein Fazel Zarandi, Solmaz Ghazanfar Ahari, Nader Ghaffari-Nasab
Format: Article
Language:fas
Published: Allameh Tabataba'i University Press 2012-12-01
Series:Muṭāli̒āt-i Mudīriyyat-i Ṣan̒atī
Subjects:
Online Access:https://jims.atu.ac.ir/article_1901_acd6e2a0972280b8ccd5c5e7d1066c8d.pdf
_version_ 1827392807623458816
author Mohamad Hossein Fazel Zarandi
Solmaz Ghazanfar Ahari
Nader Ghaffari-Nasab
author_facet Mohamad Hossein Fazel Zarandi
Solmaz Ghazanfar Ahari
Nader Ghaffari-Nasab
author_sort Mohamad Hossein Fazel Zarandi
collection DOAJ
description Estimating the optimal number of clusters in an unsupervisedpartitioning of data sets has been a challenging area in recent years.These indices usually use two criteria called compactness andseparation to evaluate the efficiency of the performed clustering. Inthis paper a new separation measure for ECAS cluster validity index,proposed by Fazel et al. [1] is identified, which uses Jaccard distancein order to consider the whole shape of clusters. Jaccard distance usesthe size of intersection and union of fuzzy sets, giving the clustervalidity index more information about the overlap and separation ofclusters. This property results in high robustness of the proposed indexdealing with various degrees of fuzziness in comparison with ECAS.To test the efficiency of the proposed index in comparison with nineother indices existing in the literature, 15 data sets (3 existing datasetsand 12 artificial data sets) have been used. Computational resultsindicate robustness and high capability of the proposed index incomparison with previous indices
first_indexed 2024-03-08T17:38:43Z
format Article
id doaj.art-2ef8031542f546c9bc84ea175ef85588
institution Directory Open Access Journal
issn 2251-8029
2476-602X
language fas
last_indexed 2024-03-08T17:38:43Z
publishDate 2012-12-01
publisher Allameh Tabataba'i University Press
record_format Article
series Muṭāli̒āt-i Mudīriyyat-i Ṣan̒atī
spelling doaj.art-2ef8031542f546c9bc84ea175ef855882024-01-02T11:15:20ZfasAllameh Tabataba'i University PressMuṭāli̒āt-i Mudīriyyat-i Ṣan̒atī2251-80292476-602X2012-12-01102722431901A new exponential cluster validity index using Jaccard distanceMohamad Hossein Fazel Zarandi0Solmaz Ghazanfar Ahari1Nader Ghaffari-Nasab2استاد دانشکده مهندسی صنایع و سیستمهای مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایرانکارشناس ارشد مهندسی مالی دانشگاه صنعتی امیرکبیر، تهران، ایراندانشجوی دکتری مهندسی صنایع دانشگاه علم و صنعت ایران، تهران، ایران. )نویسنده مسئولEstimating the optimal number of clusters in an unsupervisedpartitioning of data sets has been a challenging area in recent years.These indices usually use two criteria called compactness andseparation to evaluate the efficiency of the performed clustering. Inthis paper a new separation measure for ECAS cluster validity index,proposed by Fazel et al. [1] is identified, which uses Jaccard distancein order to consider the whole shape of clusters. Jaccard distance usesthe size of intersection and union of fuzzy sets, giving the clustervalidity index more information about the overlap and separation ofclusters. This property results in high robustness of the proposed indexdealing with various degrees of fuzziness in comparison with ECAS.To test the efficiency of the proposed index in comparison with nineother indices existing in the literature, 15 data sets (3 existing datasetsand 12 artificial data sets) have been used. Computational resultsindicate robustness and high capability of the proposed index incomparison with previous indiceshttps://jims.atu.ac.ir/article_1901_acd6e2a0972280b8ccd5c5e7d1066c8d.pdfcluster validity indexjaccard distancefcmexponential compactness and separation
spellingShingle Mohamad Hossein Fazel Zarandi
Solmaz Ghazanfar Ahari
Nader Ghaffari-Nasab
A new exponential cluster validity index using Jaccard distance
Muṭāli̒āt-i Mudīriyyat-i Ṣan̒atī
cluster validity index
jaccard distance
fcm
exponential compactness and separation
title A new exponential cluster validity index using Jaccard distance
title_full A new exponential cluster validity index using Jaccard distance
title_fullStr A new exponential cluster validity index using Jaccard distance
title_full_unstemmed A new exponential cluster validity index using Jaccard distance
title_short A new exponential cluster validity index using Jaccard distance
title_sort new exponential cluster validity index using jaccard distance
topic cluster validity index
jaccard distance
fcm
exponential compactness and separation
url https://jims.atu.ac.ir/article_1901_acd6e2a0972280b8ccd5c5e7d1066c8d.pdf
work_keys_str_mv AT mohamadhosseinfazelzarandi anewexponentialclustervalidityindexusingjaccarddistance
AT solmazghazanfarahari anewexponentialclustervalidityindexusingjaccarddistance
AT naderghaffarinasab anewexponentialclustervalidityindexusingjaccarddistance
AT mohamadhosseinfazelzarandi newexponentialclustervalidityindexusingjaccarddistance
AT solmazghazanfarahari newexponentialclustervalidityindexusingjaccarddistance
AT naderghaffarinasab newexponentialclustervalidityindexusingjaccarddistance