Pengklasteran Kabupaten/Kota di Jawa Tengah berdasarkan Tenaga Kesehatan dengan Menggunakan Metode Ward dan K-Means

Analisis klaster merupakan suatu metode yang digunakan untuk mengelompokkan objek (kasus) ke dalam klaster (kelompok) yang relatif sama.  Tujuan penelitian ini untuk mengklasterkan Kabupaten/Kota di Provinsi Jawa Tengah berdasarkan tenaga kesehatan tahun 2015 seperti tenaga medis, tenaga keperawatan...

Full description

Bibliographic Details
Main Authors: Sri Puji Lestari, Epha Diana Supandi, Pipit Pratiwi Rahayu
Format: Article
Language:Indonesian
Published: Universitas Islam Negeri Sunan Kalijaga Yogyakarta 2018-10-01
Series:Jurnal Fourier
Subjects:
Online Access:http://fourier.or.id/index.php/FOURIER/article/view/80
Description
Summary:Analisis klaster merupakan suatu metode yang digunakan untuk mengelompokkan objek (kasus) ke dalam klaster (kelompok) yang relatif sama.  Tujuan penelitian ini untuk mengklasterkan Kabupaten/Kota di Provinsi Jawa Tengah berdasarkan tenaga kesehatan tahun 2015 seperti tenaga medis, tenaga keperawatan, tenaga kebidanan, tenaga kefarmasian dan tenaga kesehatan lainnya dengan menggunakan metode Ward dan K-Means. Hasil penelitian menunjukkan ada tiga klaster terbentuk dimana metode Ward menghasilkan nilai rasio simpangan baku sebesar 0,3019% lebih besar jika dibandingkan dengan nilai rasio simpangan baku pada metode K-Means yaitu 0,2974%. Pada kasus ini, metode K-Means merupakan metode yang lebih baik dibandingkan metode Ward. [Cluster analysis is a method used to group objects (cases) into clusters (groups) that are relatively the same. The purpose of this study is to classify districts/cities in Central Java Province based on health worker in 2015 such as medical personnel, nursing staff, midwifery staff, pharmacy personnel and health workers using the Ward and K-Means methods. The results show that there are three clusters formed where the Ward method produce a standard deviation ratio of 0.3019% greater than the standard deviation ratio in the K-Means method, which is 0.2974%. In this case, the K-Means method is a better method than the Ward method.]
ISSN:2252-763X
2541-5239