Action recognition using attention-based spatio-temporal VLAD networks and adaptive video sequences optimization
Abstract In the field of human action recognition, it is a long-standing challenge to characterize the video-level spatio-temporal features effectively. This is attributable in part to the inability of CNN to model long-range temporal information, especially for actions that consist of multiple stag...
Κύριοι συγγραφείς: | Zhengkui Weng, Xinmin Li, Shoujian Xiong |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
Nature Portfolio
2024-10-01
|
Σειρά: | Scientific Reports |
Διαθέσιμο Online: | https://doi.org/10.1038/s41598-024-75640-6 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Action-stage emphasized spatiotemporal VLAD for video action recognition
ανά: Tu, Zhigang, κ.ά.
Έκδοση: (2021) -
GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation for Doppler-Radar Gesture Recognition
ανά: Abel Diaz Berenguer, κ.ά.
Έκδοση: (2019-01-01) -
Exploiting spatio‐temporal knowledge for video action recognition
ανά: Huigang Zhang, κ.ά.
Έκδοση: (2023-03-01) -
Agglomerative Clustering and Residual-VLAD Encoding for Human Action Recognition
ανά: Ammar Mohsin Butt, κ.ά.
Έκδοση: (2020-06-01) -
An End to End Framework With Adaptive Spatio-Temporal Attention Module for Human Action Recognition
ανά: Shaocan Liu, κ.ά.
Έκδοση: (2020-01-01)