Secret Sharing, Zero Sum Sets, and Hamming Codes

A <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>-secret sharing scheme is a met...

Full description

Bibliographic Details
Main Authors: Selda Çalkavur, Patrick Solé
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/10/1644
_version_ 1827705538523168768
author Selda Çalkavur
Patrick Solé
author_facet Selda Çalkavur
Patrick Solé
author_sort Selda Çalkavur
collection DOAJ
description A <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>-secret sharing scheme is a method of distribution of information among <i>n</i> participants such that any <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> of them can reconstruct the secret but any <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> cannot. A ramp secret sharing scheme is a relaxation of that protocol that allows that some <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-coalitions could reconstruct the secret. In this work, we explore some ramp secret sharing schemes based on quotients of polynomial rings. The security analysis depends on the distribution of zero-sum sets in abelian groups. We characterize all finite commutative rings for which the sum of all elements is zero, a result of independent interest. When the quotient is a finite field, we are led to study the weight distribution of a coset of shortened Hamming codes.
first_indexed 2024-03-10T16:06:24Z
format Article
id doaj.art-2f474c88107a47b4867df7acbea352d9
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T16:06:24Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2f474c88107a47b4867df7acbea352d92023-11-20T14:50:47ZengMDPI AGMathematics2227-73902020-09-01810164410.3390/math8101644Secret Sharing, Zero Sum Sets, and Hamming CodesSelda Çalkavur0Patrick Solé1Mathematics Department, Kocaeli University, 41380 Kocaeli, TurkeyI2M, Aix Marseille University, Centrale Marseilles, CNRS, 163 Avenue de Luminy, 13009 Marseille, FranceA <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>-secret sharing scheme is a method of distribution of information among <i>n</i> participants such that any <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> of them can reconstruct the secret but any <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> cannot. A ramp secret sharing scheme is a relaxation of that protocol that allows that some <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-coalitions could reconstruct the secret. In this work, we explore some ramp secret sharing schemes based on quotients of polynomial rings. The security analysis depends on the distribution of zero-sum sets in abelian groups. We characterize all finite commutative rings for which the sum of all elements is zero, a result of independent interest. When the quotient is a finite field, we are led to study the weight distribution of a coset of shortened Hamming codes.https://www.mdpi.com/2227-7390/8/10/1644secret sharingthreshold schemeramp schemepolynomial residue ringzero-sum set
spellingShingle Selda Çalkavur
Patrick Solé
Secret Sharing, Zero Sum Sets, and Hamming Codes
Mathematics
secret sharing
threshold scheme
ramp scheme
polynomial residue ring
zero-sum set
title Secret Sharing, Zero Sum Sets, and Hamming Codes
title_full Secret Sharing, Zero Sum Sets, and Hamming Codes
title_fullStr Secret Sharing, Zero Sum Sets, and Hamming Codes
title_full_unstemmed Secret Sharing, Zero Sum Sets, and Hamming Codes
title_short Secret Sharing, Zero Sum Sets, and Hamming Codes
title_sort secret sharing zero sum sets and hamming codes
topic secret sharing
threshold scheme
ramp scheme
polynomial residue ring
zero-sum set
url https://www.mdpi.com/2227-7390/8/10/1644
work_keys_str_mv AT seldacalkavur secretsharingzerosumsetsandhammingcodes
AT patricksole secretsharingzerosumsetsandhammingcodes