On the existence of positive solutions for a local fractional boundary value problem with an integral boundary condition

In this work, we are concerened with the fractional differential equation      \begin{displaymath} D^{\alpha}_{0^+} u(t)+f(t,u(s))=0,\quad 1<\alpha\leq 2 \end{displaymath} where $D^\alpha_{0^+}$ is  the standard Riemann-Liouville fractional  derivative, subject to the local boundary conditions \...

תיאור מלא

מידע ביבליוגרפי
מחבר ראשי: Asghar Ahmadkhanlu
פורמט: Article
שפה:English
יצא לאור: Sociedade Brasileira de Matemática 2020-10-01
סדרה:Boletim da Sociedade Paranaense de Matemática
גישה מקוונת:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/40065
תיאור
סיכום:In this work, we are concerened with the fractional differential equation      \begin{displaymath} D^{\alpha}_{0^+} u(t)+f(t,u(s))=0,\quad 1<\alpha\leq 2 \end{displaymath} where $D^\alpha_{0^+}$ is  the standard Riemann-Liouville fractional  derivative, subject to the local boundary conditions \begin{displaymath} u(0)=0,\quad u(1)+\int_0^\eta u(t)dt=0, \quad 0\leq \eta< 1. \end{displaymath} We try to obtain the existence of positive solutions by using some fixed point theorems. \end{abstract}
ISSN:0037-8712
2175-1188