Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling Design

This paper describes the process of the design and verification of a milling tool and tooling that may contribute to the renouncement of the flood cooling method when mineral oils and oil-in-water emulsions are used as coolants. The proposed solutions are based on the idea of coolant supply in inter...

Full description

Bibliographic Details
Main Authors: Ilia Radchenko, Wataru Takahashi, Hidebumi Takahashi, Taro Abe, Hiroyuki Sasahara
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/4/1379
_version_ 1797299010492432384
author Ilia Radchenko
Wataru Takahashi
Hidebumi Takahashi
Taro Abe
Hiroyuki Sasahara
author_facet Ilia Radchenko
Wataru Takahashi
Hidebumi Takahashi
Taro Abe
Hiroyuki Sasahara
author_sort Ilia Radchenko
collection DOAJ
description This paper describes the process of the design and verification of a milling tool and tooling that may contribute to the renouncement of the flood cooling method when mineral oils and oil-in-water emulsions are used as coolants. The proposed solutions are based on the idea of coolant supply in internal channels created inside of a cutting tool. As an alternative to the aforementioned mineral oil-based coolants, liquids with higher cooling efficiency and environmental friendliness (green coolants) were considered. Given coolants’ possible lack of lubricating properties and negative (corrosive, etc.) influence on a machine tool’s units, tooling delivers these coolants to the cutting tool and bypasses the standard machine tool’s supply system. The geometry of the milling tool (a cutting insert with an internal channel) was tested in the framework of a stress simulation. To perform it, cutting force components <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>y</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> were determined empirically and then applied to the simulated area of contact between the tool and the workpiece. Based on the obtained principal stress values <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula>, the factor of safety was calculated with the <i>Mohr–Coulomb</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn><mo> </mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn><mo> </mo><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> failure criteria. The proposed milling tool, equipped with a novel type of labyrinth seal with no friction between its components, was experimentally tested to confirm its ability to maintain leak-tightness at different values of spindle speed (200~2000 rpm) and coolant supply volume (1.0~10.0 L/min). Based on the results of the stress simulation and the leak-tightness experiment, conclusions were drawn about further modernization and utilization prospects of the proposed milling tool and tooling design.
first_indexed 2024-03-07T22:44:21Z
format Article
id doaj.art-2f55734ff5894f90a4d1f13df32a149b
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-07T22:44:21Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-2f55734ff5894f90a4d1f13df32a149b2024-02-23T15:05:48ZengMDPI AGApplied Sciences2076-34172024-02-01144137910.3390/app14041379Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling DesignIlia Radchenko0Wataru Takahashi1Hidebumi Takahashi2Taro Abe3Hiroyuki Sasahara4Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-shi 184-8588, Tokyo, JapanMetalworking Solutions Company, Mitsubishi Materials Corporation, 1-600 Kitabukuro-Cho, Omiya-ku, Saitama-shi 330-8508, Saitama, JapanMetalworking Solutions Company, Mitsubishi Materials Corporation, 1-600 Kitabukuro-Cho, Omiya-ku, Saitama-shi 330-8508, Saitama, JapanMetalworking Solutions Company, Mitsubishi Materials Corporation, 1-600 Kitabukuro-Cho, Omiya-ku, Saitama-shi 330-8508, Saitama, JapanDepartment of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei-shi 184-8588, Tokyo, JapanThis paper describes the process of the design and verification of a milling tool and tooling that may contribute to the renouncement of the flood cooling method when mineral oils and oil-in-water emulsions are used as coolants. The proposed solutions are based on the idea of coolant supply in internal channels created inside of a cutting tool. As an alternative to the aforementioned mineral oil-based coolants, liquids with higher cooling efficiency and environmental friendliness (green coolants) were considered. Given coolants’ possible lack of lubricating properties and negative (corrosive, etc.) influence on a machine tool’s units, tooling delivers these coolants to the cutting tool and bypasses the standard machine tool’s supply system. The geometry of the milling tool (a cutting insert with an internal channel) was tested in the framework of a stress simulation. To perform it, cutting force components <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>y</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> were determined empirically and then applied to the simulated area of contact between the tool and the workpiece. Based on the obtained principal stress values <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula>, the factor of safety was calculated with the <i>Mohr–Coulomb</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn><mo> </mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn><mo> </mo><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> failure criteria. The proposed milling tool, equipped with a novel type of labyrinth seal with no friction between its components, was experimentally tested to confirm its ability to maintain leak-tightness at different values of spindle speed (200~2000 rpm) and coolant supply volume (1.0~10.0 L/min). Based on the results of the stress simulation and the leak-tightness experiment, conclusions were drawn about further modernization and utilization prospects of the proposed milling tool and tooling design.https://www.mdpi.com/2076-3417/14/4/1379machiningmillingcutting tooltoolinginternal circulationstress test
spellingShingle Ilia Radchenko
Wataru Takahashi
Hidebumi Takahashi
Taro Abe
Hiroyuki Sasahara
Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling Design
Applied Sciences
machining
milling
cutting tool
tooling
internal circulation
stress test
title Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling Design
title_full Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling Design
title_fullStr Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling Design
title_full_unstemmed Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling Design
title_short Introduction of Internal Circulation-Based Cooling Methods and Green Coolants in Milling via Cutting Tool and Tooling Design
title_sort introduction of internal circulation based cooling methods and green coolants in milling via cutting tool and tooling design
topic machining
milling
cutting tool
tooling
internal circulation
stress test
url https://www.mdpi.com/2076-3417/14/4/1379
work_keys_str_mv AT iliaradchenko introductionofinternalcirculationbasedcoolingmethodsandgreencoolantsinmillingviacuttingtoolandtoolingdesign
AT watarutakahashi introductionofinternalcirculationbasedcoolingmethodsandgreencoolantsinmillingviacuttingtoolandtoolingdesign
AT hidebumitakahashi introductionofinternalcirculationbasedcoolingmethodsandgreencoolantsinmillingviacuttingtoolandtoolingdesign
AT taroabe introductionofinternalcirculationbasedcoolingmethodsandgreencoolantsinmillingviacuttingtoolandtoolingdesign
AT hiroyukisasahara introductionofinternalcirculationbasedcoolingmethodsandgreencoolantsinmillingviacuttingtoolandtoolingdesign