Performance Evaluation and Optimization of a Photovoltaic/Thermal (PV/T) System according to Climatic Conditions

Population and economic growth, industrial activities, development of technology, and depletion of fossil fuels have all led to increasing energy demand. As a result, there is an increasing ambition towards implementation of sustainable energy sources. In this study, first, a review of the literatur...

Full description

Bibliographic Details
Main Authors: Ehsanolah Assareh, Masoud Jafarian, Mojtaba Nedaei, Mohammad Firoozzadeh, Moonyong Lee
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/20/7489
Description
Summary:Population and economic growth, industrial activities, development of technology, and depletion of fossil fuels have all led to increasing energy demand. As a result, there is an increasing ambition towards implementation of sustainable energy sources. In this study, first, a review of the literature is conducted to learn about various methods and objectives for optimization of photovoltaic and thermal (PV/T) systems. Then, a case study is considered, and the seasonal and hourly solar radiation are studied. Further, two methods of multiobjective evolutionary algorithm based on decomposition (MOEA/D) and multiobjective particle swarm optimization (MOPSO) are compared. On this basis, the energy and exergy efficiencies are analyzed for a proposed PV/T system. The outcomes are validated by taking into account the previous studies, and a sufficient agreement is found indicating the validity and accuracy of the results. It is also found that the efficiency rates for both energy and exergy soar with a rise in the ambient temperature. Additionally, a growth in the warm water flow rate from 0.4 to 1 kg/s increases the exergy efficiency by 0.6%. It is concluded that the MOEA/D method outperforms the MOPSO in terms of the optimization of the proposed PV/T system.
ISSN:1996-1073